Skip to main content

Advertisement

Log in

Aptamer-Functionalized Silica Nanoparticles for Targeted Cancer Therapy

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Target-specific drug delivery system that can transport an effective dosage of anti-cancer drugs to the targeted tumor cells can significantly reduce drug toxicity to the normal cells and increase the therapeutic effect of the drug. In our work, we have evaluated the cytotoxic potential of paclitaxel-loaded silica nanoparticles (Si-PTX NPs) prepared by template-directed stöber synthesis technique. The particles were characterized using transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. We have modified the surface of the drug-loaded particles chemically and conjugated a tumor-specific aptamer (Apt-Si-PTX NPs) to facilitate targeted drug delivery to the cancer cells. In vitro studies carried out demonstrated that the aptamer-conjugated paclitaxel-loaded silica nanoparticles could target the cancer cells with high specificity and destroy them effectively, while sparing the normal cells. This work concludes that the aptamer-tagged paclitaxel-loaded silica nanoparticles are excellent targeting moieties for targeted drug delivery to tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang, Y. W. (2011). Towards biocompatible nanovalves based on mesoporous silica nanoparticles. Medicinal Chemistry Communications. doi:10.1039/C1MD00158B.

  2. Liu, D., He, X., Wang, K., He, C., Shi, H., Jian, L. (2010). Biocompatible silica nanoparticles—Insulin conjugates for mesenchymal stem cell adipogenic differentiation. Bioconjugate Chemistry, 21, 1673–1684.

    Article  Google Scholar 

  3. Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., Lin, V. S.-Y. (2010). Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 6, 1952–1967.

    Article  Google Scholar 

  4. Lin, Y.-S., Tsai, C.-P., Huang, H.-Y., et al. (2005). Well ordered mesoporous silica nanoparticles as cell markers. Chem mate, 17(18), 4570–4573.

    Article  Google Scholar 

  5. Santra, S., Yang, H., Dutta, D., et al. (2004). TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chemical Communications, 24, 2810–2811.

    Article  Google Scholar 

  6. Mal, N., Fujiwara, M., Tanaka, Y., et al. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421, 350–353.

    Article  Google Scholar 

  7. He, X., Duan, J., Wang, K., Tan, W. (2004). A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition. Journal of Nanoscience and Nanotechnology, 4, 585–589.

    Article  Google Scholar 

  8. Liong, M., Lu, J., Kovochich, M., et al. (2008). Multifunctional inorganic nanoparticles for imaging. Targeting, and drug delivery. ACS Nano, 2, 889–896.

    Article  Google Scholar 

  9. Ferris, D. P., Lu, J., Gothard, C., et al. (2011). Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small, 7, 1816–1826.

    Article  Google Scholar 

  10. Xing, Z.-C., Chang, Y., Kang, I.-K. (2010). Immobilization of biomolecules on the surface of inorganic nanoparticles for biomedical applications. Science and Technology of Advanced Materials, 11, 14101.

    Article  Google Scholar 

  11. Sara, B., Genovese, D., Juris, R., et al. (2011). Luminescent silica nanoparticles: Extending the frontiers of brightness. Angewandte Chemie, 50, 4056–4066.

    Article  Google Scholar 

  12. Rosen, J. E., & Gu, F. X. (2011). Surface functionalization of silica nanoparticles with cysteine: A low-fouling Zwitterionic surface. Langmuir, 27, 10507–10513.

    Article  Google Scholar 

  13. Nair, R., Poulose, A. C., Nagaoka, Y., et al. (2011). Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: Effects on seed germination and their potential as biolabels for plants. Journal of Fluorescence. doi:10.1007/s10895-011-0904-5.

  14. Veeranarayanan, S., Cheruvathoor, A. P., Mohamed, S., et al. (2011). FITC labeled silica nanoparticles as efficient cell tags: Uptake and photostability study in endothelial cells. Journal of Fluorescence. doi:10.1007/s10895-011-0991-3.

  15. Yuan, H. (1998). Studies on the chemistry of paclitaxel. (Unpublished doctoral dissertation). Virginia polytechnic institute and state university, Virginia, United States

  16. Honore, S., Pasquier, E., Braguer, D. (2005). Understanding microtubule dynamics for improved cancer therapy. Cellular and molecular life sciences: CMLS, 62(24), 3039–3056. doi:10.1007/s00018-005-5330-x.

    Article  Google Scholar 

  17. Schiff, P. B., Fant, J., Horwitz, S. B. (1979). Promotion of microtubule assembly in vitro by taxol. Nature, 277, 665–667.

    Article  Google Scholar 

  18. Parness, J., & Horwitz, S. B. (1981). Taxol binds to polymerized tubulin in vitro. The Journal of Cell Biology, 91, 479–487.

    Article  Google Scholar 

  19. Jang, S. H., Wienties, M. G., Au, J. L. (2001). Determinants of paclitaxel uptake, accumulation and retention in solid tumors. Investigational New Drugs, 19, 113–123.

    Article  Google Scholar 

  20. Woods, C. M., Zhu, J., McQueney, P. A., et al. (1995). Taxol-induced mitotic block riggers rapid onset of a p53-independent apoptotic pathway. Molecular Medicine, 1, 506–526.

    Google Scholar 

  21. Lanni, S. J., Lowe, S. W., Licitra, E. J., et al. (1997). p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proceedings of the National Acadcademy Science U S A, 94, 9679–9683.

    Article  Google Scholar 

  22. Ozalp, V. C., Eyidogan, F., Oktem, H. A. (2011). Aptamer-gated nanoparticles for smart drug delivery. Review Literature and Arts of The Americas, 1137–1157. doi:10.3390/ph4081137.

  23. Brewer, E., Coleman, J., Lowman, A. (2011). Emerging technologies of polymeric nanoparticles in cancer drug delivery. Journal of Nanomaterials, 2011, 1–10. doi:10.1155/2011/408675.

    Article  Google Scholar 

  24. Mairal, T., Ozalp, V. C., Lozano Sánchez, P., Mir, M., Katakis, I., O’Sullivan, C. K. (2008). Aptamers: Molecular tools for analytical applications. Analytical and Bioanalytical Chemistry, 390(4), 989–1007. doi:10.1007/s00216-007-1346-4.

    Article  Google Scholar 

  25. Yun, X-ying. (2008). 3-doped silica nanoparticle aptasensor for detection of thrombin based on electrogenerated chemiluminescence. Science and Technology, 20675031, 315–320.

    Google Scholar 

  26. Soundararajan, S., Spicer, E. K., Courtenay-luck, N., Fernandes, D. J., Plc, A. (n.d.). AS1411 inhibits the stabilization of bcl-2 mRNA by nucleolin in human breast cancer cells. Time, 1411–1411. http://www.investis.com/antisoma/posters/aacr07poster.pdf

  27. Soundararajan, S., Wang, L., Sridharan, V., Chen, W., Courtenay-luck, N., Jones, D., Spicer, E. K., et al. (2009). Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Leukemia & Lymphoma, 76(5), 984–991. doi:10.1124/mol.109.055947.

    Google Scholar 

  28. Jim, E., & L, D. (2011). Aptamers: Turning the spotlight on cells. doi:10.1002/wnan.133.

  29. Ray, P., & White, R. R. (2010). Aptamers for targeted drug delivery. Pharmaceuticals, 3(6), 1761–1778. doi:10.3390/ph3061761.

    Article  Google Scholar 

  30. Ireson, C. R., & Kelland, L. R. (2006). Discovery and development of anticancer aptamers. Molecular Cancer Therapeutics, 5(12), 2957–2962. doi:10.1158/1535-7163.MCT-06-0172.

    Article  Google Scholar 

  31. Sokolov, K., Follen, M., Aaron, J., Pavlova, I., Malpica, A., Lotan, R., Richards-kortum, R. (2004). Advances in brief real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles 1. Cancer Research, 63, 1999–2004.

    Google Scholar 

  32. Ikanovic, M., Rudzinski, W. E., Bruno, J. G., Allman, A., Carrillo, M. P., Dwarakanath, S., Bhahdigadi, S., Rao, P., Kiel, J. L., Andrews, C. J. (2007). Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. Journal of Fluorescence, 17(2), 193–199.

    Article  Google Scholar 

  33. Bruno, J. G., Phillips, T., Carrillo, M. P., Crowell, R. (2009). Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. Journal of Fluorescence, 19(3), 427–435.

    Article  Google Scholar 

  34. Bhattacharya, D., Das, M., Mishra, D., Banerjee, I., Sahu, S. K., Maiti, T. K., Pramanik, P. (2011). Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: A novel ultradispersed nanoconjugates for bimodal imaging. Nanoscale, 3, 1653–1662.

    Article  Google Scholar 

  35. Fan J., Fang G., Wang X., Zeng F., Xiang Y., Wu S. (2011) Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles. Nanotechnology, 22, 455102 (11 pp) doi:10.1088/0957-4484/22/45/455102.

  36. De Souza, R., Zahedi, P., Allen, C. J., Piquette-Miller, M. (2009). Biocompatibility of injectable chitosan—Phospholipid implant systems. Biomaterials, 30, 3818–3824.

    Article  Google Scholar 

  37. Yu, C., Hu, Y., Duan, J., Yuan, W., Wang, C., Xu, H., Yang, X. (2011). Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One, 6(9), e24077. doi:10.1371/journal.pone.0024077.

    Article  Google Scholar 

Download references

Acknowledgment

Athulya Aravind, Srivani Veeranarayanan, and Aby Cheruvathoor Poulose thank the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan for the financial support given as Monbukagakusho fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sakthi Kumar.

Additional information

Athulya Aravind and Srivani Veeranarayanan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aravind, A., Veeranarayanan, S., Poulose, A.C. et al. Aptamer-Functionalized Silica Nanoparticles for Targeted Cancer Therapy. BioNanoSci. 2, 1–8 (2012). https://doi.org/10.1007/s12668-011-0029-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-011-0029-y

Keywords

Navigation