Skip to main content

Advertisement

Log in

An overview of energy demand forecasting methods published in 2005–2015

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The importance of energy demand management has been more vital in recent decades as the resources are getting less, emission is getting more and developments in applying renewable and clean energies has not been globally applied. Demand forecasting plays a vital role in energy supply-demand management for both governments and private companies. Therefore, using models to accurately forecast the future energy consumption trends—specifically with nonlinear data—is an important issue for the power production and distribution systems. Several techniques have been developed over the last few decades to accurately predict the future in energy consumption. This paper reviews various energy demand-forecasting methods that have been published as research articles between 2005 and 2015. The scope of forecasting applications and techniques is quite large, and this article focuses on the methods which are used to predict energy consumption. The applications of traditional techniques such as econometric and time series models along with soft computing methods such as neural networks, fuzzy logic and other models are reviewed in the current work. The most cited studies applied neural networks to forecast the energy consumption and approved the notable performance of the models, but computation time is much more than many other methods based on its sophisticated structure. Another field of future research includes the development of hybrid methods. The literature shows that the classical methods cannot result in dominant outputs anymore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kazemi, A., Hosseinzadeh, M.: A multi-level fuzzy linear regression model for forecasting industry energy demand of Iran. Proc. Soc. Behav. Sci. 41, 342–348 (2012)

    Article  Google Scholar 

  2. Utama, N.A., Ishihara, K.N., Tezuka, T., Farzaneh, H., McLellan, B., Zhang, Q.: Energy Demand Forecast for South East Asia Region: an econometric approach with relation to the energy per capita “Curve”. In: Zero-Carbon Energy Kyoto 2012, pp. 31–41. Springer, Japan (2013)

  3. Iranmanesh, H., Abdollahzade, M., Miranian, A.: Mid-term energy demand forecasting by hybrid neuro-fuzzy models. Energies 5(1), 1–21 (2011)

    Article  Google Scholar 

  4. Ekonomou, L.: Greek long-term energy consumption prediction using artificial neural networks. Energy 35(2), 512–517 (2010)

    Article  Google Scholar 

  5. An, N., Zhao, W., Wang, J., Shang, D., Zhao, E.: Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy 49, 279–288 (2013)

    Article  Google Scholar 

  6. De Felice, M., Alessandri, A., Ruti, P.M.: Electricity demand forecasting over Italy: potential benefits using numerical weather prediction models. Electric Power Syst. Res. 104, 71–79 (2013)

    Article  Google Scholar 

  7. Kavaklioglu, K., Ceylan, H., Ozturk, H.K., Canyurt, O.E.: Modeling and prediction of Turkey’s electricity consumption using artificial neural networks. Energy Conv. Manag. 50(11), 2719–2727 (2009)

    Article  Google Scholar 

  8. Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N.K.: “Summary for Policymakers”. Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014)

  9. Pappas, S.S., Ekonomou, L., Karampelas, P., Karamousantas, D.C., Katsikas, S.K., Chatzarakis, G.E., Skafidas, P.D.: Electricity demand load forecasting of the Hellenic power system using an ARMA model. Electric Power Syst. Res. 80(3), 256–264 (2010)

    Article  Google Scholar 

  10. Kucukali, S., Baris, K.: Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy 38(5), 2438–2445 (2010)

    Article  Google Scholar 

  11. McBeath, B., Grackin, A.: Demand Management in the Second Decade: a structured view, part 1. ChainLink Brief (2010)

  12. Abdel-Aal, R.E.: Univariate modeling and forecasting of monthly energy demand time series using abductive and neural networks. Comput. Ind. Eng. 54(4), 903–917 (2008)

    Article  Google Scholar 

  13. Zhaozheng, S., Yanjun, J., Qingzhe, J.: The Combined Model of Gray Theory and Neural Network which is based Matlab Software for Forecasting of Oil Product Demand (2010)

  14. As’ad, M.: Finding the Best ARIMA Model to Forecast Daily Peak Electricity Demand. In: Proceedings of the Fifth Annual ASEARC Conference. University of Wollongong (2012)

  15. González-Romera, E., Jaramillo-Morán, M.Á., Carmona-Fernández, D.: Forecasting of the electric energy demand trend and monthly fluctuation with neural networks. Comput. Ind. Eng. 52(3), 336–343 (2007)

    Article  Google Scholar 

  16. Chang, P.C., Fan, C.Y., Lin, J.J.: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Int. J. Electr. Power Energy Syst. 33(1), 17–27 (2011)

    Article  Google Scholar 

  17. Dong, B., Cao, C., Lee, S.E.: Applying support vector machines to predict building energy consumption in tropical region. Energy Build. 37(5), 545–553 (2005)

    Article  Google Scholar 

  18. Azadeh, A., Ghaderi, S.F., Tarverdian, S., Saberi, M.: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption. Appl. Math. Comput. 186(2), 1731–1741 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Kumar, U., Jain, V.K.: Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 35(4), 1709–1716 (2010)

    Article  Google Scholar 

  20. Fan, C., Xiao, F., Wang, S.: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl. Energy 127, 1 (2014)

    Article  Google Scholar 

  21. Hermes, C.J., Melo, C., Knabben, F.T., Gonçalves, J.M.: Prediction of the energy consumption of household refrigerators and freezers via steady-state simulation. Appl. Energy 86(7), 1311–1319 (2009)

    Article  Google Scholar 

  22. Hawarah, L., Ploix, S., Jacomino, M.: User behavior prediction in energy consumption in housing using Bayesian networks. In: Artificial Intelligence and Soft Computing, pp. 372–379. Springer, Berlin, Heidelberg (2010)

  23. Gürbüz, F., Öztürk, C., Pardalos, P.: Prediction of electricity energy consumption of Turkey via artificial bee colony: a case study. Energy Syst. 4(3), 289–300 (2013)

    Article  Google Scholar 

  24. Mousavi, S.M., Mostafavi, E.S., Hosseinpour, F.: Gene expression programming as a basis for new generation of electricity demand prediction models. Comput. Ind. Eng. 74, 120–128 (2014)

    Article  Google Scholar 

  25. Suganthi, L., Samuel, A.A.: Energy models for demand forecasting—a review. Renew. Sustain. Energy Rev. 16(2), 1223–1240 (2012)

    Article  Google Scholar 

  26. Abu-El-Magd, M.A., Sinha, N.K.: Short-term load demand modeling and forecasting: a review. Syst. Man Cybern. IEEE Trans. 12(3), 370–382 (1982)

    Article  MATH  Google Scholar 

  27. Ghods, L., Kalantar, M.: Different methods of long-term electric load demand forecasting; a comprehensive review. Iran. J. Electr. Electron. Eng. 7(4), 249–259 (2011)

    Google Scholar 

  28. Bajay, S.V.: Long-term electricity demand forecasting models: a review of methodologies. Electric Power Syst. Res. 6(4), 243–257 (1983)

    Article  Google Scholar 

  29. Hyndman, R.J.: Review of Transpower’s electricity demand forecasting methods (2011)

  30. Mukherjee, S.K.: Energy demand forecasting: a critical review of current approaches. Energy, Water and Telecommunication Department, Washington DC

  31. Srinivasan, D.: Energy demand prediction using GMDH networks. Neurocomputing 72(1), 625–629 (2008)

    Article  Google Scholar 

  32. Baker, K.J., Rylatt, R.M.: Improving the prediction of UK domestic energy-demand using annual consumption-data. Appl. Energy 85(6), 475–482 (2008)

    Article  Google Scholar 

  33. Pedersen, L., Stang, J., Ulseth, R.: Load prediction method for heat and electricity demand in buildings for the purpose of planning for mixed energy distribution systems. Energy Build. 40(7), 1124–1134 (2008)

    Article  Google Scholar 

  34. Kolokotroni, M., Davies, M., Croxford, B., Bhuiyan, S., Mavrogianni, A.: A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island: Case-study of London. Solar Energy 84(12), 2246–2255 (2010)

    Article  Google Scholar 

  35. Kwak, Y., Seo, D., Jang, C., Huh, J.H.: Feasibility study on a novel methodology for short-term real-time energy demand prediction using weather forecasting data. Energy Build. 57, 250–260 (2013)

    Article  Google Scholar 

  36. Adamowski, J., Fung Chan, H., Prasher, S.O., Ozga-Zielinski, B., Sliusarieva, A.: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Research 48(1) (2012)

  37. Ghiassi, M., Zimbra, D.K., Saidane, H.: Urban water demand forecasting with a dynamic artificial neural network model. J. Water Res. Plan. Manag. 134(2), 138–146 (2008)

    Article  Google Scholar 

  38. Chen, C.F., Lai, M.C., Yeh, C.C.: Forecasting tourism demand based on empirical mode decomposition and neural network. Knowl. Based Syst. 26, 281–287 (2012)

    Article  Google Scholar 

  39. González, P.A., Zamarreno, J.M.: Prediction of hourly energy consumption in buildings based on a feedback artificial neural network. Energy Build. 37(6), 595–601 (2005)

    Article  Google Scholar 

  40. Yang, S.X., Li, N.: Power demand forecast based on optimized neural networks by improved Genetic Algorithm. In: Machine Learning and Cybernetics, International Conference, pp. 2877–2881. IEEE (2006)

  41. Sözen, A., Arcaklioglu, E.: Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey. Energy Policy 35(10), 4981–4992 (2007)

    Article  Google Scholar 

  42. González-Romera, E., Jaramillo-Morán, M.A., Carmona-Fernández, D.: Monthly electric energy demand forecasting with neural networks and Fourier series. Energy Conv. Manag. 49(11), 3135–3142 (2008)

    Article  Google Scholar 

  43. Zhang, R., Wang, D.: Forecasting annual electricity demand using BP neural network based on three sub-swarms PSO. In: Control and Decision Conference. CCDC. Chinese, pp. 1409–1413. IEEE (2008)

  44. Ekonomou, L., Oikonomou, D.S.: Application and comparison of several artificial neural networks for forecasting the Hellenic daily electricity demand load. In: Proceedings of the 7th WSEAS International Conference on Artificial intelligence, knowledge engineering and data bases, pp. 67–71. World Scientific and Engineering Academy and Society (WSEAS) (2008)

  45. Wang, J.M., Liang, X.H.: The forecast of energy demand on artificial neural network. In: Artificial Intelligence and Computational Intelligence. AICI’09. International Conference, vol. 3, pp. 31–35. IEEE (2009)

  46. Kavaklioglu, K.: Modeling and prediction of Turkey’s electricity consumption using Support Vector Regression. Appl. Energy 88(1), 368–375 (2011)

    Article  Google Scholar 

  47. Çunkaş, M., Altun, A.A.: Long term electricity demand forecasting in Turkey using artificial neural networks. Energy Sour. Part B 5(3), 279–289 (2010)

    Article  Google Scholar 

  48. Ghods, L., Kalantar, M.: Long-term peak demand forecasting by using radial basis function neural networks. Iran. J. Electr. Electron. Eng. 6(3), 175–182 (2010)

    Google Scholar 

  49. Kandananond, K.: Forecasting electricity demand in Thailand with an artificial neural network approach. Energies 4(8), 1246–1257 (2011)

    Article  Google Scholar 

  50. Filik, U.B., Gerek, O.N., Kurban, M.: Hourly forecasting of long term electric energy demand using novel mathematical models and neural networks. Int. J. Innov. Comput. Inf. Control. 7(6), 3545–3557 (2011)

    Google Scholar 

  51. Ahmad, W.M.: Forecasting short term load demand using multilayer feed-forward (MLFF) neural network model. Appl. Math. Sci. 6(108), 5359–5368 (2012)

    Google Scholar 

  52. Bunnoon, P., Chalermyanont, K., Limsakul, C.: Wavelet and Neural Network Approach to Demand Forecasting based on Whole and Electric Sub-Control Center Area. Int. J. Soft Comput. Eng. 1(6) (2006)

  53. Saravanan, S., Kannan, S., Thangaraj, C.: Forecasting India’s electricity demand using artificial neural network. In: Advances in Engineering, Science and Management (ICAESM), International Conference, pp. 79–83. IEEE (2012)

  54. Zhang, Q., Gu, Y.L., Ti, W., Cai, J.J.: Supply and demand forecasting of blast furnace gas based on artificial neural network in iron and steel works. In: Advanced Materials Research, vol. 443, pp. 183–188. Trans Tech Publications (2012)

  55. Hassan, S., Khosravi, A., Jaafar, J.: Neural network ensemble: Evaluation of aggregation algorithms in electricity demand forecasting. In: Neural Networks (IJCNN), The 2013 International Joint Conference, pp. 1–6. IEEE (2013)

  56. Chramcov, B., Vařacha, P.: Usage of the evolutionary designed neural network for heat demand forecast. In: Nostradamus: modern methods of prediction, modeling and analysis of nonlinear systems, pp. 103–112. Springer, Berlin Heidelberg (2013)

  57. Voronin, S., Partanen, J.: Forecasting electricity price and demand using a hybrid approach based on wavelet transform, ARIMA and neural networks. Int. J. Energy Res. 38(5), 626–637 (2014)

    Article  Google Scholar 

  58. Hassan, S., Khosravi, A., Jaafar, J.: Examining performance of aggregation algorithms for neural network-based electricity demand forecasting. Int. J. Electr. Power Energy Systems 64, 1098–1105 (2015)

  59. Ustundag, A., Kılınç, M.S., Cevikcan, E.: Fuzzy rule-based system for the economic analysis of RFID investments. Expert Syst. Appl. 37(7), 5300–5306 (2010)

    Article  Google Scholar 

  60. Haji, A., Assadi, M.: Fuzzy expert systems and challenge of new product pricing. Comput. Ind. Eng. 56(2), 616–630 (2009)

    Article  Google Scholar 

  61. Iyatomi, H., Hagiwara, M.: Adaptive fuzzy inference neural network. Pattern Recognit. 37(10), 2049–2057 (2004)

    Article  Google Scholar 

  62. Hong, T.P., Lin, K.Y., Wang, S.L.: Fuzzy data mining for interesting generalized association rules. Fuzzy Sets Syst. 138(2), 255–269 (2003)

    Article  MathSciNet  Google Scholar 

  63. Mamlook, R., Badran, O., Abdulhadi, E.: A fuzzy inference model for short-term load forecasting. Energy Policy 37(4), 1239–1248 (2009)

    Article  Google Scholar 

  64. Abiyev, R., Abiyev, V.H., Ardil, C.: Electricity consumption prediction model using neuro-fuzzy system. Development 149, 1653 (2005)

    Google Scholar 

  65. Ucenic, C., George, A.: A neuro-fuzzy approach to forecast the electricity demand. In: Proceedings of the 2006 IASME/WSEAS International Conference on Energy & Environmental Systems, pp. 299–304 (2006)

  66. Kabir, G., Sumi, R.: Integrating fuzzy Delphi method with artificial neural network for demand forecasting of power engineering company. Manag. Sci. Lett. 2(5), 1491–1504 (2012)

    Article  Google Scholar 

  67. Adika, C.O., Wang, L.: Short term energy consumption prediction using bio-inspired fuzzy systems. In: North American Power Symposium (NAPS), pp. 1–6. IEEE (2012)

  68. Amina, M., Kodogiannis, V.S., Petrounias, I., Tomtsis, D.: A hybrid intelligent approach for the prediction of electricity consumption. Int. J. Electr. Power Energy Syst. 43(1), 99–108 (2012)

    Article  Google Scholar 

  69. Sarı, I.U.: Forecasting Energy Demand Using Fuzzy Seasonal Time Series. In: Computational Intelligence Systems in Industrial Engineering, pp. 251–269. Atlantis Press (2012)

  70. Ávila, F., Saez, D., Jiménez-Estévez, G., Reyes, L., Núñez, A.: Fuzzy demand forecasting in a predictive control strategy for a renewable-energy based microgrid. In: Proc. Eur. Control Conf.(ECC), pp. 2020–2025 (2013)

  71. Moraes, L.A., Flauzino, R.A., Araujo, M.A., Batista, O.E.: A fuzzy methodology to improve time series forecast of power demand in distribution systems. In: Power and Energy Society General Meeting (PES), IEEE, pp. 1–5. IEEE (2013)

  72. Hassani, H., Abdollahzadeh, M., Iranmanesh, H., Miranian, A.: A self-similar local neuro-fuzzy model for short-term demand forecasting. J. Syst. Sci. Complex. 27(1), 3–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  73. Rodger, J.A.: A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings. Expert Syst. Appl. 41(4), 1813–1829 (2014)

    Article  Google Scholar 

  74. Efendi, R., Ismail, Z., Deris, M.M.: A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand. Appl. Soft Comput. 28, 422–430 (2015)

    Article  Google Scholar 

  75. Vieira, J.L., Sousa, J.M.: Fuzzy clustering and prediction of electricity demand based on household characteristics (2015)

  76. Hamilton, J.D.: Time series analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  77. Campo, R., Ruiz, P.: Adaptive weather-sensitive short term load forecast. Power Syst. IEEE Trans. 2(3), 592–598 (1987)

    Article  Google Scholar 

  78. Ghosh, S.: Univariate time-series forecasting of monthly peak demand of electricity in northern India. Int. J. Indian Cult. Bus. Manag. 1(4), 466–474 (2008)

    Article  Google Scholar 

  79. Mati, A.A., Gajoga, B.G., Jimoh, B., Adegobye, A., Dajab, D.D.: Electricity demand forecasting in Nigeria using time series model. Pac. J. Sci. Technol. 10(2), 479–485 (2009)

    Google Scholar 

  80. García-Ascanio, C., Maté, C.: Electric power demand forecasting using interval time series: A comparison between VAR and iMLP. Energy Policy. 38(2), 715–725 (2010)

    Article  Google Scholar 

  81. Wang, J., Chi, D., Wu, J., Lu, H.Y.: Chaotic time series method combined with particle swarm optimization and trend adjustment for electricity demand forecasting. Expert Syst. Appl. 38(7), 8419–8429 (2011)

    Article  Google Scholar 

  82. Shang, H.L.: Functional time series approach for forecasting very short-term electricity demand. J. Appl. Stat. 40(1), 152–168 (2013)

    Article  MathSciNet  Google Scholar 

  83. Simmhan, Y., Noor, M.U.: Scalable prediction of energy consumption using incremental time series clustering. In: Big Data, IEEE International Conference, pp. 29–36. IEEE (2013)

  84. Rana, M., Koprinska, I., Khosravi, A.: Feature selection for interval forecasting of electricity demand time series data. In: Artificial Neural Networks, pp. 445–462. Springer International Publishing (2015)

  85. Julong, D.: Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)

    MathSciNet  MATH  Google Scholar 

  86. Akay, D., Atak, M.: Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32(9), 1670–1675 (2007)

    Article  Google Scholar 

  87. Zhou, P., Ang, B.W., Poh, K.L.: A trigonometric grey prediction approach to forecasting electricity demand. Energy 31(14), 2839–2847 (2006)

    Article  Google Scholar 

  88. Niu, D.X., Zhang, B., Chen, L.R., Zhang, T.T.: Application of intelligent optimization grey model in middle-term electricity demand forecasting. East China Electric Power 1, 001 (2006)

    Google Scholar 

  89. Zhou Zibu, L.L., Shuying, Z.: Natural gas demand forecast based on grey theory [J]. Nat. Gas Explor. Dev. 1, 021 (2006)

  90. Liu, H., Cai, L., Wu, X.: Grey-RBF neural network prediction model for city electricity demand forecasting. In: Wireless Communications, Networking and Mobile Computing. WiCOM’08. 4th International Conference, pp. 1–5. IEEE (2008)

  91. Wang, X.P., Meng, M.: Forecasting electricity demand using Grey-Markov model. In: Machine Learning and Cybernetics, International Conference, vol. 3, pp. 1244–1248. IEEE (2008)

  92. Wang, Q., Wang, X., Xia, F.: Integration of grey model and multiple regression model to predict energy consumption. In: International Conference on Energy and Environment Technology, pp. 194–197. IEEE (2009)

  93. You, G.F., Wang, P.: Energy demand forecast by using Gray Models [J]. J. Sichuan Univ. Sci. Eng. 3, 038 (2009)

    Google Scholar 

  94. Wang, Q.: Grey prediction model and multivariate statistical techniques forecasting electrical energy consumption in Wenzhou, China. In: Intelligent Information Technology and Security Informatics, 2009. IITSI’09. Second International Symposium, pp. 167–170. IEEE (2009)

  95. Yanjun, L., Yuliang, Z.: Energy demand forecast of Henan Province by Using Gray Models GM (1, 1)[J]. Henan Sci. 12, 010 (2009)

    Google Scholar 

  96. Pi, D., Liu, J., Qin, X.: A grey prediction approach to forecasting energy demand in China. Energy Sour. Part A 32(16), 1517–1528 (2010)

    Article  Google Scholar 

  97. Feng, S.J., Ma, Y.D., Song, Z.L., Ying, J.: Forecasting the energy consumption of China by the grey prediction model. Energy Sour. Part B 7(4), 376–389 (2012)

    Article  Google Scholar 

  98. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: forecasting and control. Wiley, New York (2015)

  99. Huang, Y.F., Chen, P.J., Nguyen, T.L.: Forecasting with Fourier Residual Modified ARIMA Model—an Empirical Case of Inbound Tourism Demand in New Zealand

  100. Kareem, Y.H., Majeed, A.R.: Monthly Peak-load Demand Forecasting for Sulaimany Governorate Using SARIMA. In: Transmission & Distribution Conference and Exposition: Latin America. TDC’06. IEEE/PES, pp. 1–5. IEEE (2006)

  101. Hor, C.L., Watson, S.J., Majithia, S.: Daily load forecasting and maximum demand estimation using ARIMA and GARCH. In: Probabilistic Methods Applied to Power Systems. PMAPS. International Conference, pp. 1–6. IEEE (2006)

  102. Ohtsuka, Y., Oga, T., Kakamu, K.: Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach. Comput. Stat. Data Anal. 54(11), 2721–2735 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  103. Mohamed, N., Ahmad, M.H., Ismail, Z.: Double seasonal ARIMA model for forecasting load demand. Matematika. 26, 217–231 (2010)

    MathSciNet  Google Scholar 

  104. Sigauke, C., Chikobvu, D.: Prediction of daily peak electricity demand in South Africa using volatility forecasting models. Energy Econ. 33(5), 882–888 (2011)

    Article  Google Scholar 

  105. Wang, Y., Wang, J., Zhao, G., Dong, Y.: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China. Energy Policy 48, 284–294 (2012)

    Article  Google Scholar 

  106. Pappas, S.S., Ekonomou, L., Moussas, V.C., Karampelas, P., Katsikas, S.K.: Adaptive load forecasting of the Hellenic electric grid. J. Zhejiang Univ. Sci. A 9(12), 1724–1730 (2008)

  107. Abdul-Wahab, S.A., Bakheit, C.S., Al-Alawi, S.M.: Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ. Model. Softw. 20(10), 1263–1271 (2005)

    Article  Google Scholar 

  108. Ismail, Z., Jamaluddin, F., Jamaludin, F.: Time series regression model for forecasting Malaysian electricity load demand. Asian J. Math. Stat. 1(3), 139–149 (2008)

    Article  Google Scholar 

  109. Antoch, J., Prchal, L., Rosaria De Rosa, M., Sarda, P.: Electricity consumption prediction with functional linear regression using spline estimators. J. Appl. Stat. 37(12), 2027–2041 (2010)

    Article  MathSciNet  Google Scholar 

  110. Aranda, A., Ferreira, G., Mainar-Toledo, M.D., Scarpellini, S., Sastresa, E.L.: Multiple regression models to predict the annual energy consumption in the Spanish banking sector. Energy Build. 30(49), 380–387 (2012)

    Article  Google Scholar 

  111. Catalina, T., Iordache, V., Caracaleanu, B.: Multiple regression model for fast prediction of the heating energy demand. Energy Build. 57, 302–312 (2013)

    Article  Google Scholar 

  112. Al-Qahtani, F.H., Crone, S.F.: Multivariate k-nearest neighbour regression for time series data—a novel algorithm for forecasting UK electricity demand. InNeural Networks (IJCNN), the 2013 International Joint Conference, pp. 1–8. IEEE (2013)

  113. Gibbons, C., Faruqui, A.: Quantile regression for peak demand forecasting. Available at SSRN 2485657 (2014)

  114. Braun, M.R., Altan, H., Beck, S.B.: Using regression analysis to predict the future energy consumption of a supermarket in the UK. Appl. Energy 130, 305–313 (2014)

    Article  Google Scholar 

  115. Halepoto, I.A., Uqaili, M.A., Chowdhry, B.S.: Least square regression based integrated multi-parameteric demand modeling for short term load forecasting. Mehran Univ. Res. J. Eng. Technol. 33(2), 215–226 (2014)

    Google Scholar 

  116. Vu, D.H., Muttaqi, K.M., Agalgaonkar, A.P.: A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Appl. Energy 140, 385–394 (2015)

    Article  Google Scholar 

  117. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory, pp. 144–152. ACM (1992)

  118. Vapnik, V.: The nature of statistical learning theory. Springer Science & Business Media, USA (2013)

  119. Basak, D., Pal, S., Patranabis, D.C.: Support vector regression. Neural Inf. Process. Lett. Rev. 11(10), 203–224 (2007)

    Google Scholar 

  120. Wang, J., Zhu, W., Zhang, W., Sun, D.: A trend fixed on firstly and seasonal adjustment model combined with the \(\varepsilon \)-SVR for short-term forecasting of electricity demand. Energy Policy 37(11), 4901–4909 (2009)

    Article  Google Scholar 

  121. Setiawan, A., Koprinska, I., Agelidis, V.G.: Very short-term electricity load demand forecasting using support vector regression. In: Neural Networks, 2009. IJCNN 2009. International Joint Conference, pp. 2888–2894. IEEE (2009)

  122. Yi, W., Ying, L.: Applying LS-SVM to predict primary energy consumption. InE-Product E-Service and E-Entertainment (ICEEE), International Conference, pp. 1–4. IEEE (2010)

  123. Zhao, H., Magoulès, F.: Parallel support vector machines applied to the prediction of multiple buildings energy consumption. J. Algorithms Comput. Technol. 4(2), 231–249 (2010)

    Article  Google Scholar 

  124. Yang, S.X., Cao, Y., Liu, D., Huang, C.F.: RS-SVM forecasting model and power supply-demand forecast. J. Central South Univ. Technol. 18, 2074–2079 (2011)

    Article  Google Scholar 

  125. Hong, W.C., Dong, Y., Lai, C.Y., Chen, L.Y., Wei, S.Y.: SVR with hybrid chaotic immune algorithm for seasonal load demand forecasting. Energies 4(6), 960–977 (2011)

    Article  Google Scholar 

  126. Solomon, D.M., Winter, R.L., Boulanger, A.G., Anderson, R.N., Wu, L.L.: Forecasting energy demand in large commercial buildings using support vector machine regression (2011)

  127. Fattaheian-Dehkordi, S., Fereidunian, A., Gholami-Dehkordi, H., Lesani, H.: Hour-ahead demand forecasting in smart grid using support vector regression (SVR). Int. Trans. Electr. Energy Syst. 24(12), 1650–1663 (2014)

    Article  Google Scholar 

  128. Xiong, T., Bao, Y., Hu, Z.: Interval forecasting of electricity demand: a novel bivariate EMD-based support vector regression modeling framework. Int. J. Electr. Power Energy Syst. 63, 353–362 (2014)

    Article  Google Scholar 

  129. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor (1975)

  130. Talbi, E.G.: Metaheuristics: from design to implementation. Wiley, New York (2009)

  131. Haupt, R.L., Haupt, S.E.: Practical genetic algorithms. Wiley, New York (2004)

  132. Ozturk, H.K., Ceylan, H.: Forecasting total and industrial sector electricity demand based on genetic algorithm approach: Turkey case study. Int. J. Energy Res. 29(9), 829–840 (2005)

    Article  Google Scholar 

  133. Zhao, H., Liu, R., Zhao, Z., Fan, C.: Analysis of energy consumption prediction model based on genetic algorithm and wavelet neural network. In: InIntelligent Systems and Applications (ISA), 3rd International Workshop on 2011 May 28, pp. 1–4. IEEE (2011)

  134. Yugui, C.: Electric energy demand forecast of Nanchang based on cellular genetic algorithm and BP neural network. TELKOMNIKA Indones. J. Electr. Eng. 11(7), 3821–3825 (2013)

    Google Scholar 

  135. Ghanbari, A., Kazemi, S.M., Mehmanpazir, F., Nakhostin, M.M.: A Cooperative Ant Colony Optimization-Genetic Algorithm approach for construction of energy demand forecasting knowledge-based expert systems. Knowl. Based Syst. 39, 194–206 (2013)

    Article  Google Scholar 

  136. Nazari, H., Kazemi, A., Hashemi, M.H., Sadat, M.M., Nazari, M.: Evaluating the performance of genetic and particle swarm optimization algorithms to select an appropriate scenario for forecasting energy demand using economic indicators: residential and commercial sectors of Iran. Int. J. Energy Environ. Eng. 6(4), 345–355 (2015)

    Article  Google Scholar 

  137. Wang, Y.W.: An artificial chromosomes embedded genetic algorithms for smart grid power demand forecast. J. Ind. Intell. Inf. 3(1) (2015)

  138. Dutra, M.R., de Souza Manfrinato, J.W.: Econometric model to forecast demand for agricultural machinery automotive (2009)

  139. Dey, H.S., Kabir, M.A., Wadud, Z., Khan, S.I., Azad, M.A.: Econometric modeling and forecasting of natural gas demand for power sector in Bangladesh. In: TENCON 2011–2011 IEEE Region 10 Conference, pp. 1383–1386. IEEE (2011)

  140. Kayacan, B., Ucal, M.Ş., Öztürk, A., Balı, R., Koçer, S., Kaplan, E.: A primary econometric approach to modeling and forecasting the demand for fuelwood in Turkey. J. Food Agric. Environ. 10(3&4), 934–937 (2012)

    Google Scholar 

  141. Mtembo, V., Taylor, G.A., Ekwue, A.: A novel econometric model for peak demand forecasting. In: Power Engineering Conference (UPEC), 49th International Universities, pp. 1–6. IEEE (2014)

  142. Roming, N., Leimbach, M.: Econometric forecasting of final energy demand using in-sample and out-of-sample model selection criteria (2015)

  143. Forrester, J.W.: Industry dynamics. Massachusetts, Cambridge (1961)

    Google Scholar 

  144. Fong, W.K., Matsumoto, H., Lun, Y.F., Kimura, R.: System dynamic model for the prediction of urban energy consumption trends. In: Proceeding I of the 6th international conference on indoor air quality, ventilation & energy conservation in buildings (IAQVEC 2007), pp. 762–769. Tohoku University, Sendai (2007)

  145. Vaudreuil, M.P.: System dynamics computer simulation modeling to forecast the energy demands for the Montachusett region under a Variety of Simulations and Scenarios (Doctoral dissertation, WORCESTER POLYTECHNIC INSTITUTE) (2011)

  146. Akhwanzada, S.A., Tahar, R.M.: Strategic forecasting of electricity demand using system dynamics approach. Int. J. Environ. Sci. Dev. 3(4), 328 (2012)

    Google Scholar 

  147. Wu, Z., Xu, J.: Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas. Energy 49, 19–31 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Ghalehkhondabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalehkhondabi, I., Ardjmand, E., Weckman, G.R. et al. An overview of energy demand forecasting methods published in 2005–2015. Energy Syst 8, 411–447 (2017). https://doi.org/10.1007/s12667-016-0203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-016-0203-y

Keywords

Navigation