Skip to main content

Advertisement

Log in

Influence of Al2O3 and Si3N4 Nano-particulates on Fracture Toughness Behaviour of Sintered Aluminium

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Fracture toughness behaviour of [Al/Si3N4/Al2O3]P Nanocomposites was examined in the current research work. The nanocomposites were fabricated using powder metallurgical route for various compositions under the compacting pressure of 12.06 MPa and at a sintering temperature of 650 °C. The fracture toughness for all sample compositions estimated for longitudinal direction was accessed through apparent fracture toughness (KQ), Equivalent energy fracture toughness (Kee) and J integral (J) measurement. The result revealed the exceptionally good fracture toughness parameters (KQ-17.6 MPa√m, Kee-20.5 MPa√m and J integral-3.9 kJ/m2) of 2 wt% mixed Al2O3 and Si3N4 as compared to the pure sintered sample (KQ-10.7 MPa√m, Kee-13.4 MPa√m and J integral-1.0 kJ/m2). The fracture toughness parameters for 2 wt% mix Al2O3 and Si3N4 were observed to be maximum out of all sample compositions ranging from P to M3, substantiating the role of transgranular ductile fracture mechanism as compared to the rest of the samples where the transgranular brittle fracture was dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Camargo P H C, Satyanarayana KG, and Wypych F, Mat Res 12 (2009) 1.

    Article  CAS  Google Scholar 

  2. Ezatpour H R, Sajjadi S A, Sabzevar M H, and Huang Y, Mat Des 55 (2014) 921.

    Article  CAS  Google Scholar 

  3. Fayomi O S I, Babaremu K O, and Akande I G, Int J Mech Eng Technol 10 (2019) 9.

    Google Scholar 

  4. Groza J R, Int J Powder Metall 35 (1999) 59.

    CAS  Google Scholar 

  5. Chaim R, Scrip Mater 158 (2019) 88.

    Article  CAS  Google Scholar 

  6. Chaim R, J Mater Sci 48 (2013) 502.

    Article  CAS  Google Scholar 

  7. Fathian Z, Maleki A, and Niroumand B, Ceram Int 43 (2017) 5302.

    Article  CAS  Google Scholar 

  8. Sanpo N, Berndt C C, Wen C, and Wang J, Acta Biomater 9 (2013) 5830.

    Article  CAS  Google Scholar 

  9. Roy R, Roy R A, and Roy D M, Mater Lett 4 (1986) 323.

    Article  Google Scholar 

  10. Chandramouli R, Kandavel T K, Shanmugasundaram D, and Kumar T A, Mater Des 28 (2007) 2260.

    Article  CAS  Google Scholar 

  11. Jeyasimman D, Narayanasamy R, Ponalagusamy R, Anandakrishnan V, and Kamaraj M, Mater Des 64 (2014) 783.

    Article  CAS  Google Scholar 

  12. Khodabakhshi F, Yazdabadi H G, Kokabi A H, and Simchi A, Mater Sci Eng A 585 (2013) 222.

    Article  CAS  Google Scholar 

  13. Reddy M P, et al, Prog Nat Sci Mater Int 27(5) (2017) 606.

    Article  CAS  Google Scholar 

  14. Nandakumar N and Vivekanandan R, Experimental investigation of corrosion characteristics on Al6063 hybrid metal matrix composites, in Proceedings of the International Conference on Advances in Materials, Manufacturing and Applications (2015).

  15. Pathak M K, Joshi A, Mer K K S, and Jayaganthan R, Acta Metall Sin (English Lett) 32 (2019) 845.

    Article  CAS  Google Scholar 

  16. Deepan M, Pandey C, Saini N, Mahapatra M M, and Mulik R S, J Braz Soc Mech Sci Eng 39(11) (2017) 4613.

    Article  CAS  Google Scholar 

  17. Gupta P, Kumar D, Parkash O, and Jha A K, Proc Inst Mech Eng Part J J Eng Tribol 228 (2014) 362.

    Article  CAS  Google Scholar 

  18. Han Q, Geng Y, Setchi R F, Lacan D, and Evans S L, Compos Part B Eng 127 (2017) 26.

    Article  CAS  Google Scholar 

  19. Wang F, Drzal L T, Qin Y, and Huang Z, Compos Part A Appl Sci Manuf 87 (2016) 10.

    Article  CAS  Google Scholar 

  20. Andreola F, Leonelli C, and Romagnoli M, Am Ceram Soc Bull 79 (2000) 49.

    CAS  Google Scholar 

  21. Renk O, Hohenwarter A, Eder K, Kormout, K S, Cairney J M, and Pippan R, Scr Mater 95 (2015) 27.

    Article  CAS  Google Scholar 

  22. Hohenwarter A and Pippan R, Mater Sci Eng A 527 (2010) 2649.

    Article  Google Scholar 

  23. Ceschini L, Dahle A, Gupta M, Jarfors A E W, Jayalakshmi S, Morri A, Rotundo F, Toschi S, and Arvind Singh R, Aluminum and Magnesium Metal Matrix Nanocomposites, Springer, Berlin (2017).

    Book  Google Scholar 

  24. Botta Filho W J, Fogagnolo J B, Rodrigues C A D, Kiminami C S, Bolfarini C, and Yavari A R, Mater Sci Eng A 375 (2004) 936.

    Article  Google Scholar 

  25. Issa H K, Taherizadeh A, Maleki A, and Ghaei A, Ceram Int 43 (2017) 14582.

    Article  CAS  Google Scholar 

  26. Huo H and Woo K D, J Mater Sci 41 (2006) 3249.

    Article  CAS  Google Scholar 

  27. Roux Le S and Petkov V, J Appl Crystallogr 43 (2010) 181.

    Article  Google Scholar 

  28. Bhattacharya P, Bellon P, Averback R S, and Hales S J, J Alloys Compd 368 (2004) 187

    Article  CAS  Google Scholar 

  29. Huo S H, Qian M, Schaffer G B, and Crossin E, Aluminium powder metallurgy, in Fundamentals of Aluminium Metallurgy. Woodhead Publishing (2011), pp 655–701.

  30. Li B, Wang X, Chen H, Jie H, Huang C and Gou G, J Alloys Compd 678 (2016) 160.

    Article  CAS  Google Scholar 

  31. Pathak M K, Joshi A, and Mer K K S, Mater Res Express 6 (2019) 105012.

  32. Park J M, Woo Sohn S, Kim D H, Kim K B, Kim W T, and Eckert J, Appl Phys Lett 92 (2008) 091910.

  33. Beer F P, Johnston E R, DeWolf J T, Mazurek D F, Anderson P M, Hirth J P, and Lothe J (2017) Theory of Dislocations, Cambridge University Press, New York. Anderson, T L Fracture Mechanics: Fundamentals and Applications, CRC Press, London (2005).

  34. Rice J R, J Appl Mech 35 (1968) 379.

    Article  Google Scholar 

  35. Rao P S R and Mohan C B, Mater Today Proc 33 (2020) 5534.

    Article  Google Scholar 

  36. Frost N E, Pook L P, and Denton K, Eng Fract Mech 3 (1971) 109.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Joshi.

Ethics declarations

Conflict of interest

No conflict exists. We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothiyal, P., Joshi, A., Mer, K.K.S. et al. Influence of Al2O3 and Si3N4 Nano-particulates on Fracture Toughness Behaviour of Sintered Aluminium. Trans Indian Inst Met 75, 199–215 (2022). https://doi.org/10.1007/s12666-021-02411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02411-6

Keywords

Navigation