Skip to main content
Log in

Optimization of Process Parameters of Fracture Toughness Using Simulation Technique Considering Aluminum–Graphite Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The main objective of this work is to optimize the process parameters of fracture toughness such as composition of the material, a/W ratio and testing methods using the simulation technique using ANSYS tool. The material used here is the aluminum–graphite composite of the composition 6, 9 and 12 wt% of the reinforcement. The design of experiments parameters considered is testing methods, a/W ratios and composition of the composite. All the three parameters and factors are put into Taguchi’s L9 orthogonal array for analysis. The three dimensional modeling is done using the ANSYS software for simulation. The outcomes of the simulation are used to analyze process parameters. From the analysis, it is observed that the fracture toughness of the material is mainly influenced by the composition and a/W ratio, whereas the testing methods will have a least effect. The experimental, simulation and statistical results of fracture toughness agree with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anderson T L, Fracture Mechanics-Fundamentals and Applications, 3rd Edition, Taylor & Francis Group, New York (2013).

    Google Scholar 

  2. Zhu X-K, and Joyce JA, Engineering Fracture Mechanics 85 (2012) 1.

    Article  Google Scholar 

  3. Phan A V, Ansys Tutorial: 2-D Fracture Analysis, Ansys Release 7.0 (2013), p. 1.

  4. Chandwani R, Wiehahn M, and Timbrell C, in UK ANSYS Conference, Zentech International Limited (2004).

  5. Běhal J, in 20th SVSFEM ANSYS Users' Group Meeting and Conference (2012), p. 1.

  6. Begum Y, Doddamani S, and Nagesh N, International Journal of Engineering Research & Technology (IJERT), NCERAME (2015) 19.

  7. ASTM Standards, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM International, West Conshohocken (2017).

    Google Scholar 

  8. Doddamani S, and Kaleemulla M, Frattura ed Integrità Strutturale 41 (2017) 490.

    Google Scholar 

  9. Doddamani S, Kiran JO, Kaleemulla M, and Bakkappa B, Journal of The Institute of Engineers (India)-series D 100 (2019) 195. https://doi.org/10.1007/s40033-019-00188-z.

    Article  Google Scholar 

  10. Doddamani S, and Kaleemulla M, Journals Pub, International Journal of Fracture and Damage Mechanics 1 (2016) 40.

    Google Scholar 

  11. Doddamani S, Kaleemulla M, Frattura ed Integrità Strutturale 39 (2017) 274.

    Google Scholar 

  12. Doddamani S, and Kaleemulla M, Structural Integrity and Life 18 (2018) 185.

    Google Scholar 

  13. Doddamani S, and Kaleemulla M, Mechanics of Advanced Composite Structures, accepted for publication (2019).

  14. Doddamani S, and Kaleemulla M, Journal of Solid Mechanics, accepted for publication (2019).

  15. Alaneme K K, and Aluko A O, Scientia Iranica A 19 (2012) 992.

    Article  CAS  Google Scholar 

  16. Doddamani S, and Kaleemulla M, Journal of Failure Analysis and Prevention 19 (2019) 730. https://doi.org/10.1007/s11668-019-00652-8.

    Article  Google Scholar 

  17. Zhou F, Molinari J-F, and Li Y, Engineering Fracture Mechanics 71 (2004) 1357.

    Article  Google Scholar 

  18. Sharanaprabhu C M, and Raviraj M S, Frattura ed Integrità Strutturale 14 (2010) 27.

    Article  Google Scholar 

  19. Noury P, and Eriksson K, Engineering Fracture Mechanics 169 (2017) 67.

    Article  Google Scholar 

  20. Razavi S M J, Ayatollahi M R, Sommitsch C, and Moser C, Engineering Fracture Mechanics 169 (2017) 226.

    Article  Google Scholar 

  21. Chen G, and Huang X, Engineering Transactions 64 (2016) 225.

    Google Scholar 

  22. Shlyannikov V, Yarullin R, and Ishtyryakov I, Frattura ed Integrità Strutturale 41 (2017) 31.

    Article  Google Scholar 

  23. Kawabata T, and Tagawa T, Engineering Fracture Mechanics 178 (2017) 301.

    Article  Google Scholar 

  24. Rajesh A M, Doddamani S, and Kaleemulla M, Advanced Composites and Hybrid Materials, 3 (2020) 120. https://doi.org/10.1007/s42114-020-00133-9.

    Article  CAS  Google Scholar 

  25. Radhika N, Subramanian R, and Venkat Prasat S, Journal of Minerals & Materials Characterization & Engineering 10 (2011) 427. https://doi.org/10.1108/00368791311311169.

    Article  Google Scholar 

  26. Dhummansure V, Kalyanrao A A, and Doddamani S, Structural Integrity and Life 20 (2020) 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleemsab Doddamani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, Y., Bharath, K.N., Doddamani, S. et al. Optimization of Process Parameters of Fracture Toughness Using Simulation Technique Considering Aluminum–Graphite Composites. Trans Indian Inst Met 73, 3095–3103 (2020). https://doi.org/10.1007/s12666-020-02113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02113-5

Keywords

Navigation