Skip to main content
Log in

Development of a Sulfamic Acid-Based Chemical Formulation for Effective Cleaning of Modified 9Cr–1Mo Steel Steam Generator Tubes

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A new sulfamic acid-based formulation is developed for the effective chemical cleaning of modified 9Cr–1Mo steel as a replacement for the conventional corrosive nitric acid (HNO3) and hydrofluoric acid (HF) mixture. The effect of sulfamic acid concentrations and inhibitor (2-mercaptobenzimidazole, MBI) on the metal loss during cleaning of modified 9Cr–1Mo steel was studied using weight loss and electrochemical impedance spectroscopic methods. The metal loss was found to increase with increase in acid concentration, but it was significantly lower with increasing inhibitor concentration, with an efficiency of > 90%. The corrosion rates of modified 9Cr–1Mo steel with 10% sulfamic acid + 2 mM MBI, 10% sulfamic acid without inhibitor and HNO3 + HF mixture were 1290, 6426, and 303,515 μm year−1 respectively. The optimal composition for efficient cleaning, with least base metal loss, was found to be 10% sulfamic acid + 2 mM MBI. Laser Raman spectroscopic (LRS) analysis of the corrosion products obtained during chemical cleaning process revealed that a protective chromium oxide film was formed during the cleaning with sulfamic acid + inhibitor as compared to iron oxide-based films with HNO3 + HF mixture and 10% sulfamic acid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Upadhyay N, Pujar M G, Das C R, Krishna N G, Mallika C, and Kamachi Mudali U, Trans Indian Inst Met68 (2015) 129.

    CAS  Google Scholar 

  2. Hur D H, Choi M S, Kim U C, and Han J H, Nucl Eng Des220 (2003) 11.

    CAS  Google Scholar 

  3. Malik A U, Andijani I, Siddiqi N, Ahmed S, and Al-Mobayaed A, in Proc. VI Middle East Corrosion Conference, Bahrain (1994).

  4. Motamedi M, Tehrani-Bagha A R, and Mahdavian M, Electrochim Acta58 (2011) 488.

    CAS  Google Scholar 

  5. Morad M, J Appl Electrochem38 (2008) 1509.

    CAS  Google Scholar 

  6. Hermas A and Morad M, Corros Sci50 (2008) 2710.

    CAS  Google Scholar 

  7. El Azhar M, Mernari B, Traisnel M, Bentiss F, and Lagrenee M, Corros Sci43 (2001) 2229.

    Google Scholar 

  8. El Maghraby A and Soror T, Adv Appl Sci Res1 (2010) 156.

    Google Scholar 

  9. Negm N A and Aiad I A, J Surfactants Deterg10 (2007) 87.

    CAS  Google Scholar 

  10. Obot I and Obi-Egbedi N, Corros Sci52 (2010) 657.

    CAS  Google Scholar 

  11. Niamien P, Essy F, Trokourey A, Yapi A, Aka H, and D. Diabate D, Mater Chem Phys136 (2012) 59.

    CAS  Google Scholar 

  12. Obot I, Obi-Egbedi N, and Umoren S, Corros Sci51 (2009) 276.

    CAS  Google Scholar 

  13. Kabanda M M, Murulana L C, Ozcan M, Karadag F, Dehri I, Obot I, and Ebenso E E, Int J Electrochem Sci7 (2012) 5035.

    CAS  Google Scholar 

  14. Obot I and Obi-Egbedi N, Curr Appl Phys11 (2011) 382.

    Google Scholar 

  15. Obot I, Gasem Z, and Umoren S, Int J Electrochem Sci9 (2014) 2367.

    Google Scholar 

  16. Quraishi M and Sardar R, Corrosion58 (2002) 748.

    CAS  Google Scholar 

  17. Saliyan V R and Adhikari A V, Corros Sci50 (2008) 55.

    CAS  Google Scholar 

  18. Emregül K C and Atakol O, Mater Chem Phys83 (2004) 373.

    Google Scholar 

  19. Popova A, Christov M, Raicheva S, and Sokolova E, Corros Sci46 (2004) 1333.

    CAS  Google Scholar 

  20. Mahdavian M and Ashhari S, Electrochim Acta55 (2010) 1720.

    CAS  Google Scholar 

  21. Wang H L, Liu R B, and Xin J, Corros Sci46 (2004) 2455.

    CAS  Google Scholar 

  22. Wang H L, Fan H B, and Zheng J S, Mater Chem Phys77 (2003) 655.

    CAS  Google Scholar 

  23. Rafiquee M, Saxena N, Khan S, and Quraishi M, Mater Chem Phys107 (2008) 528.

    CAS  Google Scholar 

  24. Solmaz R, Kardaş G, and Erbil M, Colloids Surf A Physicochem Eng Asp312 (2008) 7.

    CAS  Google Scholar 

  25. Hassan H H, Abdelghani E, and Amin M A, Electrochim Acta52 (2007) 6359.

    CAS  Google Scholar 

  26. Quraishi M and Sharma H K, Mater Chem Phys78 (2003) 18.

    Google Scholar 

  27. Zhou J, Chen S, Zhang L, Feng Y, and Zhai H, J Electroanal Chem612 (2008) 257.

    CAS  Google Scholar 

  28. Morales-Gil P, Negrón-Silva G, Romero-Romo M, Ángeles-Chávez C, and Palomar-Pardavé M, Electrochim Acta49 (2004) 4733.

    CAS  Google Scholar 

  29. Aljourani J, Raeissi K, and Golozar M, Corros Sci51 (2009) 1836.

    CAS  Google Scholar 

  30. Wang L, Corros Sci43 (2001) 2281.

    CAS  Google Scholar 

  31. Benabdellah M, Tounsi A, Khaled KF, and Hammouti B, Arab J Chem, 4 (2011) 17.

    CAS  Google Scholar 

  32. Morales-Gil P, Walczak M, Cottis R, Romero J, and Lindsay R, Corros Sci85 (2014) 109.

    CAS  Google Scholar 

  33. Epelboin I, Keddam M, and Takenouti H, JAppl Electrochem2 (1972) 71.

    CAS  Google Scholar 

  34. Mansfeld F, Corrosion37 (1981)301.

    CAS  Google Scholar 

  35. Hachelef H, Benmoussat A, Khelifa A, Athmani D, and Bouchareb D, Environ Sci7 (2016) 1751.

    CAS  Google Scholar 

  36. Pujar M G, Parvathavarthini N, and Dayal R, J Mater Sci42 (2007) 4535.

    CAS  Google Scholar 

  37. Oh S J, Cook D, and Townsend H, Hyperfine Interact112(1998) 59.

    CAS  Google Scholar 

  38. Oblonsky L and Devine T, Corros Sci37(1995) 17.

    CAS  Google Scholar 

  39. Upadhyay N, Pujar M G, Singh S S, Krishna N G, Mallika C, and Kamachi Mudali U, Corrosion73 (2017) 1320.

    CAS  Google Scholar 

  40. Wijesinghe T S L and Blackwood D, Appl Surf Sci253 (2006) 1006.

    CAS  Google Scholar 

  41. Keddam M, Kuntz C, Takenouti H, Schustert D, and Zuili D, Electrochim Acta42 (1997) 87.

    CAS  Google Scholar 

  42. Thierry D, Persson D, Leygraf C, Delichere D, Joiret S, Pallotta C. and Hugot‐Le Goff A, J Electrochem Soc135 (1988) 305.

    CAS  Google Scholar 

  43. Ramya S, and Mudali U K, Appl Surf Sci428 (2018) 1106.

    CAS  Google Scholar 

  44. Boucherit N, Hugot-Le Goff A, and Joiret S, Corros Sci32 (1991) 497.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. George.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, N., Pujar, M.G., George, R.P. et al. Development of a Sulfamic Acid-Based Chemical Formulation for Effective Cleaning of Modified 9Cr–1Mo Steel Steam Generator Tubes. Trans Indian Inst Met 73, 343–352 (2020). https://doi.org/10.1007/s12666-019-01852-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01852-4

Keywords

Navigation