Skip to main content
Log in

The Effect of Inner Corner Radius of ECAP Die on Strain Distribution and Damage Accumulation in Deformed Sample

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present research, the effect of inner corner radius of ECAP die on the material flow characteristic and the strain distribution inside sample were analyzed using 2D plain strain finite element simulation. Results showed that increase in inner corner radius results in the formation of smaller corner gap and narrow deformation zone. Consequently, the amount of plastic strain in regions at the bottom side of sample is increased. It is also concluded that the amount of damage factor in the upper regions of sample is higher than bottom regions and therefore cracks may initiate from these regions. In addition, the pressing force was raised by increasing inner corner radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yada H, Matsumura Y, and Nakajima K, United State Patent No. 4466842, August 21 (1984).

  2. Fan Z, Mater Sci Eng A 191 (1995) 73. https://doi.org/10.1016/0921-5093(94)09621-3.

    Article  Google Scholar 

  3. Langdon T G, J Mater Sci 42 (2007) 3388. https://doi.org/10.1007/s10853-006-1475-8.

    Article  Google Scholar 

  4. Valiev R Z, Islamgoliev R K, and Alexandrov I V, Prog Mater Sci 45 (2000) 103. https://doi.org/10.1016/S0079-6425(99)00007-9.

    Article  Google Scholar 

  5. Valiev R Z, J Mater Sci 42 (2007) 1483. https://doi.org/10.1007/s10853-006-1281-3.

    Article  Google Scholar 

  6. Huang X, J Mater Sci 42 (2007) 1577. https://doi.org/10.1007/s10853-006-0988-5.

    Article  Google Scholar 

  7. Furukawa M, Horita Z, Nemoto M, and Langdon T G, J Mater Sci 36 (2001) 2835. https://doi.org/10.1023/A:1017932417043.

    Article  Google Scholar 

  8. Valiev R Z, and Langdon T G, Prog Mater Sci 51 (2006) 881. https://doi.org/10.1016/j.pmatsci.2006.02.003.

    Article  Google Scholar 

  9. Berbon P B, Furukawa M, Horita Z, Nemoto M, and Langdon T G, Metall Mater Trans A 30 (1999) 1989. https://doi.org/10.1007/s11661-999-0009-9.

    Article  Google Scholar 

  10. Iwahashi Y, Wang J, Horita Z, Nemoto M, and Langdon T G, Scripta Mater 35 (1996) 143. https://doi.org/10.1016/1359-6462(96)00107-8.

    Article  Google Scholar 

  11. Nakashima K, Horita Z, Nemoto M, and Langdon T G, Acta Mater 46 (1998) 1589. https://doi.org/10.1016/S1359-6454(97)00355-8.

    Article  Google Scholar 

  12. Prangnell P B, Harris C, and Roberts S M, Scr Mater 37 (1997) 983. https://doi.org/10.1016/S1359-6462(97)00192-9.

    Article  Google Scholar 

  13. Cerri E, Marco P P, and Leo P, J Mater Process Technol 209 (2009) 1550. https://doi.org/10.1016/j.jmatprotec.2008.04.013.

    Article  Google Scholar 

  14. Figueiredo R B, Cetlin P R, and Langdon T G, Mater Sci Eng A 518 (2009) 124. https://doi.org/10.1016/j.msea.2009.04.007.

    Article  Google Scholar 

  15. Figueiredo R B, Cetlin P R, and Langdon T G, Acta Mater 55 (2007) 4769. https://doi.org/10.1016/j.actamat.2007.04.043.

    Article  Google Scholar 

  16. Yoon S C, and Kim H S, Mater Sci Eng A 490 (2008) 438. https://doi.org/10.1016/j.msea.2008.01.066.

    Article  Google Scholar 

  17. Kim H S, Seo M H, and Hong S I, Mater Sci Eng A 291 (2000) 86. https://doi.org/10.1016/S0921-5093(00)00970-9.

    Article  Google Scholar 

  18. Basavaraj V P, Chakkingal U, and Kumar T S J Mater Process Technol 209 (2009) 89. https://doi.org/10.1016/j.jmatprotec.2008.01.031.

    Article  Google Scholar 

  19. Kang F, Wang J T, and Peng Y, Mater Sci Eng A 487 (2008) 68. https://doi.org/10.1016/j.msea.2007.09.063.

    Article  Google Scholar 

  20. Lin J, Liu Y, and Din T A, Int J Damage Mech 14 (2005) 299. https://doi.org/10.1177/1056789505050357.

    Article  Google Scholar 

  21. Ghazani M S, and Eghbali B, Comput Mater Sci 74 (2013) 124. https://doi.org/10.1016/j.commatsci.2013.02.006.

    Article  Google Scholar 

  22. Figueirdo R B, Cetlin P R, and Langdon T G, Metall Mater Trans A 41 (2010) 778. https://doi.org/10.1007/s11661-009-0100-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shaban Ghazani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazani, M.S., Moslemi, S. The Effect of Inner Corner Radius of ECAP Die on Strain Distribution and Damage Accumulation in Deformed Sample. Trans Indian Inst Met 71, 971–976 (2018). https://doi.org/10.1007/s12666-017-1230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1230-7

Keywords

Navigation