Skip to main content

Advertisement

Log in

Evaluation of Metal–Ceramic Composite Joint Under Tensile Loads at Elevated Temperature

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

An experimental study was undertaken to understand the tensile behavior of metal–ceramic composite joint with bolted configuration. Nickel based super alloy (GTM-Su-263) and SiCf/SiC composite were the material systems with an aerospace grade MJ6 bolt of GTM-Su-718. This bolted assembly was pulled at temperatures 25, 600 and 750 °C which were likely to be experienced in a typical aero engine. In case of metal–ceramic composite joint, the net tensile stress decreased from 110 to 88 MPa with increase in temperature from 25 to 600 °C. Similarly, the bearing stress reduced from 146 to 118 MPa. In all the metal–ceramic composite joints, the fracture initiated at the hole edge experienced the maximum tensile stresses. With further increase in temperature, reduction in the net tensile and bearing strength was significant and was attributed to the oxidation of the interface between the fiber and matrix. SEM studies clearly suggested that debonding and fiber pullout resulted in inferior tensile strength properties at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. DiCarlo J A, and van Roode M, in Proc of GT2006 ASME Turbo Expo 2006: Power for Land, Sea and Air, May 8–11, Barcelona, Spain (2006).

  2. Dominy J, Compos Manuf 5 (1994) 69.

    Article  Google Scholar 

  3. Ohnabe H, Masaki S, Onozuka M, Miyahara K, and Sasa T, Compos A 30 (1999) 489.

    Article  Google Scholar 

  4. Bouillon E, Louchet C, Spriet P, Ojard G, Feindel D, Logan C, and Rogers K, Developments in Advanced Ceramics and Composites: Ceramic Engineering and Science Proceedings, Vol. 26 (2008), p 207. doi:10.1002/9780470291283.ch23.

  5. Takeda M, Imai Y, and Kagawa Y, Mater Sci Eng A 286 (2000) 312.

    Article  Google Scholar 

  6. Filipuzzini L, Camus G, Naslain R, and Thebault J, J Am Ceram Soc 77 (1994) 459.

    Article  Google Scholar 

  7. Filipuzzini L, and Naslain R, J Am Ceram Soc 77 (1994) 467.

    Article  Google Scholar 

  8. Windish C F Jr, Henager C H Jr, Springer G D, and Jones R H, J Am Ceram Soc 80 (1997) 569.

    Article  Google Scholar 

  9. Zhu S, Kagawa Y, Cao JW, and Mizuno M, Metall Mater Trans A 35 (2004) 2853.

    Article  Google Scholar 

  10. Camus G, Guillaumat L, and Baste S, Compos Sci Technol 56 (1996) 1363.

    Article  Google Scholar 

  11. Jacobsen T K, and Brondsted P, J Am Ceram Soc 84 (2001) 1043.

    Article  Google Scholar 

  12. Wu S, Cheng L, Zhang L, and Xu Y, Metall Mater Trans A 37A (2006) 3587.

    Google Scholar 

  13. DiCarlo JA, in Proc of ASME Turbo Expo 2002, Amsterdam, Netherlands, June 3–6 (2002).

  14. Agullo J M, Maury F, and Jouin J M, Le Journal de Physique IV, 3 (1993) C3-549.

    Google Scholar 

  15. Hähnel A, Pippel E, Schneider R, Woltersdorf J, and Suttor D, Compos A 27A (1996) 685.

    Article  Google Scholar 

  16. Mukherji J, Def Sci J 43 (1993) 385.

    Article  Google Scholar 

  17. Messler R W Jr., Mater Des 16 (1995) 261.

    Article  Google Scholar 

  18. Thoppul SD, Finegan J, and Gibson RF, Compos Sci Technol 69 (2009) 301.

    Article  Google Scholar 

  19. Counts W A, and Johnson W S, Int J Fatigue 24 (2002) 197.

    Article  Google Scholar 

  20. Pisano A A, and Fuschi P, Compos B 42 (2011) 949.

    Article  Google Scholar 

  21. Mangalagiri P D, Dattaguru B, and Rao A K (1985), Comput Math Appl 11 1057.

    Article  Google Scholar 

  22. Ekh J, Schön J, and Zenkert D, Compos Struct 105 (2013) 35.

    Article  Google Scholar 

  23. Gray P G, and McCarthy C T, Compos Struct 94 (2012) 2450.

    Article  Google Scholar 

  24. Ortona A, Pusterla S, and Gianell S, J Eur Ceram Soc 31 (2011) 1821.

    Article  Google Scholar 

  25. Bunting P, Thompson V, Riccardo V, Fusion Eng Des 112 (2016) 42.

    Article  Google Scholar 

  26. Salvo M, Ferrari M, Lemoine P, Montorsi M A, and Merola M, J Nucl Mater 233 (1996) 949.

    Article  Google Scholar 

  27. Weidner K S, Gillespie J W Jr., and Shevchenko N, Compos Struct 93 (2011) 3175.

    Article  Google Scholar 

  28. Böhrk H, and Beyermann U, Compos Struct 92 (2010) 107.

    Article  Google Scholar 

  29. Petley V, Verma S, Ashritha S N, Babu S N, and Ramachandra S in Processing and Properties of Advanced Ceramics and Composites V: Ceramic Transactions, vol. 240. Wiley, Hoboken, p. 21 (2013)

    Chapter  Google Scholar 

  30. ASTM C 1275-00, Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Ambient Temperature. ASTM International. Available from: http://dx.doi.org/10.1520/c1275-00.

  31. ASTM C 1359-11, Test Method for Monotonic Tensile Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics With Solid Rectangular Cross-Section Test Specimens at Elevated Temperatures. ASTM International. Available from: http://dx.doi.org/10.1520/c1359-11.

  32. www.specialmetals.com/assets/documents/alloys/nimonic/nimonic-alloy-263.pdf. Accessed on 10th November 2016.

  33. www.specialmetals.com/assets/documents/alloys/inconel/inconel-alloy-718.pdf. Accessed on 10th November 2016.

Download references

Acknowledgements

The authors would like to thank The Director, Gas Turbine Research Establishment, Bangalore and Director, CSIR-National Aerospace Laboratories, Bangalore for their constant support for carrying out the work. The authors thank Dr. S. Ramachandra, Scientist, Gas Turbine Research Establishment, Bangalore for his valuable suggestions during the execution of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Petley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petley, V., Verma, S., Saravanan, K. et al. Evaluation of Metal–Ceramic Composite Joint Under Tensile Loads at Elevated Temperature. Trans Indian Inst Met 70, 769–774 (2017). https://doi.org/10.1007/s12666-017-1063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1063-4

Keywords

Navigation