Skip to main content
Log in

Effect of Mechanical Arc Oscillation on the Grain Structure of Mild Steel Weld Metal

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effect of mechanical arc oscillation on the weld metal grain structure in mild steel gas tungsten arc welds has been studied. For welds made without arc oscillation, columnar grains were observed in the weld metal; however, for the same welding parameters, the weld made with arc oscillation had smaller sized relatively equiaxed grains in the weld metal. The strengths for weld made with arc oscillation was higher than that for weld made without arc oscillation, with appreciable increase in ductility; this could be attributed to the reduction in grain size diameter due to arc oscillation. Lower weld metal hardness and increase in heat affected zone hardness was observed in weld made with arc oscillation; this could be attributed to increase in pro-eutectoid ferrite formation with absence of Widmanstatten ferrite structures in the weld metal and less coarsening of grains in the heat affected zone due to increased cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Easterling K, Introduction to Physical Metallurgy of Welding, Butterworths & Co. Ltd., Moscow (1983).

    Google Scholar 

  2. Bhadeshia, H K D H, Steels: Microstructures and Properties, 2nd edition, Edward Arnold, London (1995).

    Google Scholar 

  3. Kou S and Le Y, Weld J 64 (1985) p 51s.

    Google Scholar 

  4. Rao S R K, Reddy G M, Kamaraj M, Rao K P, Mater Sci Eng A 404 (2005) p 227.

    Article  Google Scholar 

  5. Sundaresan S, and Ram G D J, Sci Techno Weld Join 4 (1999) p 151.

    Article  CAS  Google Scholar 

  6. Sivaprasad K, Raman S G S, Mastanaiah P, Reddy G M, Mater Sci Eng A 428 (2006) p 327.

    Article  Google Scholar 

  7. Biradar N S, Mishra S, and Raman R, in 12th International Conference on Aluminium Alloys (ICAA12), (eds) Kumai S, Umezawa O, Takayama Y, Tsuchida T, Sato T, Yokohama, Japan (2010), p 922.

  8. Huang C, and Kou S, Weld J 80 (2001) p 46s.

    Google Scholar 

  9. Garland J G, Metal Constr British Weld 21 (1974) p 121.

    Google Scholar 

  10. Kumar A, Shailesh P, and Sundarrajan S, Mater Design 29 (2008) p 1904.

    Article  CAS  Google Scholar 

  11. Ram G D J, Murugesan R, and Sundaresan S, J Mater Eng Perform 8 (1999) p 513.

    Article  CAS  Google Scholar 

  12. Biradar N S, and Raman R, in: Proceedings of the IIW International Conference on joining, cutting, and surfacing technology, (eds) Kulkarni D V, Manish Samant, Krishnan S, Amitava De, Krishnan J, Hiren Patel, and Bhaduri A K, at Chennai (2011), p 371.

  13. Kou S, Welding Metallurgy, 2nd edition, Wiley, New York, 2003.

    Google Scholar 

  14. DeNale R, and Lukens W E, in Proceedings of Ti-6211 Basic Research Programme, Second Conference, (eds) Rath B B, MacDonald B A, Arora O P, Office of Naval Research, Arlington (1984) p 203.

  15. Kou S, and Le Y, Metall Trans, 16A (1985) p 1345.

    CAS  Google Scholar 

  16. Tseng CF, and Savage WF, Weld J 50 (1971) p 777.

    Google Scholar 

  17. Matsuda F, Nakagawa H, Nakata K, and Ayani R, Trans Jpn Weld Res Inst 7 (1978) p 111.

    CAS  Google Scholar 

  18. Matsuda F, Nakata K, Miyanaga Y, Kayano T, and Tsukamoto K, Trans Jpn Weld Res Inst 7 (1978) p 33.

    Google Scholar 

  19. Madhusudhan Reddy G, Gokhale A, Prasad Rao K, J Mater Sci 32 (1997) 4117.

    Article  Google Scholar 

  20. ASTM Standard E562, Standard Test Methods for Determining volume fraction by systematic manual point count (2011).

  21. ASTM Standard E 8-04, Standard Test Methods for Tension Testing of Metallic Materials (2001).

  22. Wang S J, Zhao X, Zhang Y D, Zuo L, Esling C, Mater Trans JIM 48 (2007) 2816.

    Article  CAS  Google Scholar 

  23. Mehl R F, Barrett C S, Smith D W, Trans Am Inst Min Metall Eng 105 (1933) p 215.

    Google Scholar 

  24. Wang S J, Zhao X, Xiao1 N, and Zuo1 L, Steel Research International Materials Technology, 81 (2010) p 1121. www.steelresearch-journal.com.

  25. Ohishi Y, Murai T, Ohtsuka H, Itoh K, Wada H, CAMP-ISIJ, 11 (1998) p 580.

    Google Scholar 

  26. Courtney T H, Mechanical Behaviour of Materials, McGraw-Hill (1990) p 17.

  27. Pickering F B, Physical Metallurgy and the Design of Steels, Applied Science, London (1978).

    Google Scholar 

  28. Gharibshahiyan E, Raouf A H, Parvin N, Rahimian M, Mater Design 32 (2011) p 2042.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Biradar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahajan, S., Biradar, N.S., Raman, R. et al. Effect of Mechanical Arc Oscillation on the Grain Structure of Mild Steel Weld Metal. Trans Indian Inst Met 65, 171–177 (2012). https://doi.org/10.1007/s12666-012-0118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-012-0118-9

Keywords

Navigation