Skip to main content

Advertisement

Log in

DFT study of the carbonation on mineral aerosol surface models of olivine: effect of water

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Mineral aerosols play a significant role in gas–solid interfacial and atmospheric chemistry. Carbonation of olivine aerosol, which takes place in a multiphase reaction processes, can be an effective means to reduce the concentration of atmospheric carbon dioxide. Due to the presence of a huge reserve of silicate minerals in nature, olivine aerosol could be an ideal potential raw material for mineral carbonation for its higher reactivity with H2O and CO2. However, quantitative information about the carbonation process on the surface of natural olivine aerosol is not available. In this paper, calculations on the carbonation reaction processes with and without a H2O molecule using a periodic olivine model has been carried out via the density functional theory. The pathways and their corresponding energies and structures in the carbonation reactions have been established, and the effect of water as means to reduce the energy barriers and stabilize the carbonated structures by forming hydrogen bonds has been confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen JP, Parker SC, Price DW (2009) Atomistic simulation of the surface carbonation of calcium and magnesium oxide surfaces. J Phys Chem C 113:8320–8328

    Article  Google Scholar 

  • Andreas F, Reinhard Trettin HF (2013) DFT study on the effect of water on the carbonation of portlandite. Ind Eng Chem Res 52:2169–2173

    Google Scholar 

  • Bian HS, Zender CS (2003) Mineral dust and global tropospheric chemistry: relative roles of photolysis and heterogeneous uptake. J Geophys Res Atmos 108:4672

    Google Scholar 

  • Brodholt J (1997) Ab initio calculations on point defects in forsterite (Mg2SiO4) and implications for diffusion and creep. Am Mineral 82:1049–1053

    Article  Google Scholar 

  • Chen S, Navrotsky A (2009) Calorimetric study of the surface energy of forsterite. Am Mineral 95(1):112–117

    Article  Google Scholar 

  • Couling DJ, Das U, Green WH (2012) Analysis of hydroxide sorbents for CO2 capture from warm syngas. Ind Eng Chem Res 51(41):13473–13481

    Article  Google Scholar 

  • Dana ES (1941) A textbook of mineralogy. Wiley, New York

    Google Scholar 

  • Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756–7764

    Article  Google Scholar 

  • Fricker KJ, Park A-HA (2013) Effect of H2O on Mg(OH)2 carbonation pathways for combined CO2 capture and storage. Chem Eng Sci 100:332–341

    Article  Google Scholar 

  • Gunter WD, Perkins EH, McCann TJ (1993) Aquifer disposal of CO2-rich gases: reaction design for added capacity. Energy Convers Manag 34(9–11):941–948

    Article  Google Scholar 

  • IPCC (2005) Ab initio calculations on point defects in forsterite (Mg2SiO4) and implications for diffusion and creep. Cambridge University Press, Cambridge

    Google Scholar 

  • Kudoh Y, Takeuchi Y (1985) The crystal structure of forsterite Mg2SiO4 under high pressure up to 149kpa. Z Kristallogr 171:291–302

    Google Scholar 

  • Kwon S, Fan M, Dacosta HFM, Russell AG, Tsouris C (2011) Correction to “reaction kinetics of CO2 carbonation with Mg-rich minerals”. J Phys Chem A 115(26):7638–7644

    Article  Google Scholar 

  • Kwon S, Choi JI, Lee SG, Jang SS (2014) A density functional theory (DFT) study of CO2 adsorption on Mg-rich minerals by enhanced charge distribution. Comput Mater Sci 95:181–186

    Article  Google Scholar 

  • Lackner KS, Wendt CH, Butt DP, Joyce EL, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170

    Article  Google Scholar 

  • Lin P-C, Huang C-W, Hsiao C-T, Teng H (2008) Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 Sequestration in a gas–solid system. Environ Sci Technol 42(8):2748–2752

    Article  Google Scholar 

  • Mikkelsen M, Jorgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3(1):43–81

    Article  Google Scholar 

  • Mohammad SA, Gasem KAM (2012) Modeling the competitive adsorption of CO2 and water at high pressures on wet coals. Energy Fuels 26(1):557–568

    Article  Google Scholar 

  • Pan SY, Chang EE, Chiang PC (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12(5):770–791

    Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1998) Perdew, burke, and ernzerhof reply. Phys Rev Lett 80(4):891

    Article  Google Scholar 

  • Prigiobbe V, Suarez Negreira A, Wilcox J (2013) Interaction between olivine and water based on density functional theory calculations. J Phys Chem C 117(41):21203–21216

    Article  Google Scholar 

  • Shih SM, Ho CS, Song YS, Lin JP (1999) Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Ind Eng Chem Res 38(4):1316–1322

    Article  Google Scholar 

  • Smyth JR, Hazen RMA (1973) The crystal structure and hortonolite at several temperature up to 900 °C. Am Mineral 58:588–593

    Google Scholar 

  • Xie HP (2010a) CO2 storage and climate change. Sci Technol Rev 28(18):3 (in Chinese)

    Google Scholar 

  • Xie HP (2010b) Developing low-carbon technology and promoting green economy. Energy of China 32(9):5–10 (in Chinese)

    Google Scholar 

  • Xie HP, Liu H, Wu G (2012a) Simultaneous recovery of national resources and mineralization of CO2: a new CCU method. Energy of China 34(10):15–18 (in Chinese)

    Google Scholar 

  • Xie HP, Xie LZ, Wang YF, Zhu JH, Liang B, Ju Y (2012b) CCU: a more feasible and economic strategy than CCS for reducing CO(2) emissions. J Sichuan Univ Eng Sci Ed 44(4):1–5

    Google Scholar 

  • Xie HP, Wang YF, Ju Y, Liang B, Zhu JH, Zhang R, Xie LZ, Liu T, Zhou XG, Zeng HM (2013) Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin Sci Bull 58(1):128–132

    Article  Google Scholar 

  • Xie HP, Wang YF, Chu W, Ju Y (2014a) Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride. Chin Sci Bull 59(23):2882–2889

    Article  Google Scholar 

  • Xie HP, Wang YF, He Y, Gou ML, Liu T, Wang JL, Tang L, Jiang W, Zhang R, Xie LZ (2014b) Generation of electricity from CO2 mineralization: principle and realization. Sci China Technol Sci 57(12):2335–2343

    Article  Google Scholar 

  • Xie H, Jiang W, Wang Y, Liu T, Wang R, Liang B, He Y, Wang J, Tang L, Chen J (2015a) Thermodynamics study on the generation of electricity via CO2-mineralization cell. Environ Earth Sci 74(8):6481–6488

    Article  Google Scholar 

  • Xie HP, Jiang W, Xue Y, Hou ZM, Wang Y, Wu DL, Liu T, Wang JL, Tang L (2015b) Effect of water on carbonation of mineral aerosol surface models of kaolinite: a density functional theory study. Environ Earth Sci 73(11):7053–7060

    Article  Google Scholar 

  • Xie H, Tang L, Wang Y, Liu T, Hou Z, Wang J, Wang T, Jiang W, Were P (2016) Feedstocks study on CO2. Environ Earth Sci 75(7):1–9

    Google Scholar 

  • Yang HQ, Xu ZH, Fan MH, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Programs Nos. 21573153, 51254002, and 21336004) and the National Basic Research Program of China (No. 2013BAC12B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Jiang, W., Hou, Z. et al. DFT study of the carbonation on mineral aerosol surface models of olivine: effect of water. Environ Earth Sci 76, 732 (2017). https://doi.org/10.1007/s12665-017-6988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6988-8

Keywords

Navigation