Skip to main content
Log in

Assessment of trace elements in Yercaud Lake sediments, southern India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Lake sediments are major sink for carbon and trace elements. Lake water and sediments need to be monitored continuously for environmental and geochemical explorations. In the present study, sediment characteristics, source and distribution of trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb and Zn) of Yercaud fresh water lake sediments, South India, situated at an elevation of 1515 m asl is presented. Twenty-five surface sediments were collected covering the entire expanse of the lake in a gridded pattern. Detailed chemical analyses reveal the following decreasing order of elements: Fe > Cu > Cr > Mn > Zn > Ni > Co > Pb. Geoaccumulation index, enrichment factor, contamination factor and pollution load index were calculated to evaluate the ecological impacts of these trace metals in the sediments. The index calculation indicates that all the trace elements were derived from natural process, but there are indications of anthropogenic activities. The study area was found to be highly contaminated with Cu, moderately contaminated with Cr and Co, considerably contaminated with Pb, Zn and Ni, and uncontaminated with Mn. The spatial distribution of the trace elements supports the strong association of sediment fine fraction and organic matter. The statistical principal component analysis also confirms that the concentration of Cr, Cu, Fe and Mn was mainly derived from the natural weathering and non-point agricultural sources. Pb and Zn arise due to the confluence of sewage effluents, traffic and boat activities. These elements need to be further evaluated for pollution control and prohibiting further deterioration in the Yercaud Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aloupi M, Angelidis MO (2001) Geochemistry of natural and anthropogenic metals in the coastal sediments of the islands of Lesvos, Aegean sea. Environ Pollut 113:211–219

    Google Scholar 

  • Amin B, Ismail A, Arshad A, Yap CK, Kamarudin MS (2009) Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environ Monit Assess 148:291–305

    Google Scholar 

  • Anand RR, Gilkes RJ (1987) Variations in the properties of iron oxides within individual specimens of lateritic duricrust. Aust J Soil Res 25:287–302

    Google Scholar 

  • Arunachalam A, Ramachandramoorthy T, Padmavathy S, Narendran R, Amala Fathima RS (2014) Eco-friendly preparation and biological assessment of Cr(III), Mn(II) and Fe(III) complexes with phenylacetylurea and butanoate ion ligands. Int J Pharm Pharm Sci 7:1295–1304

    Google Scholar 

  • Balamurugan P, Vasudevan S, Selvaganapathi R, Nishikanth CV (2015) Spatial distribution of grain size characteristics and its role in interpreting the sedimentary depositional environment, Kodaikanal Lake, Tamil Nadu, India. J Earth Sci Clim Change 5:217

    Google Scholar 

  • Baptista Neto JA, Smith BJ, McAllister JJ (2000) Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environ Pollut 109:1–9

    Google Scholar 

  • Becquer T, Bourdon E, Pétard J (1995) Disponibilité du nickel le long d’unetoposéquence de sols développés sur rochesultramafiques de Nouvelle-Calédonie. Comptes Rendus Acad Sci 321:585–592

    Google Scholar 

  • Bhuiyan M, Parvez L, Islam M, Dampare S, Suzuki S (2009) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173:384–392

    Google Scholar 

  • Bifano C, Mogollbn JL (1995) Metallic contaminant profiles in sediment cores from Lake Valencia, Venezuela. Environ Geochem Health 17:113–118

    Google Scholar 

  • Bing H, Wu Y, Sun Z, Yao S (2011) Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake Catchment, China. J Environ Sci 23:1671–1678

    Google Scholar 

  • Brijraj KD, Birgit GH (2003) Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: implications for source-area weathering, provenance and tectonic setting. Geosci J 7(4):299–312

    Google Scholar 

  • Birth G (2003) A scheme for assessing human impacts on coastal aquatic environments using sediments. In: Woodcofie CD, Furness RA (eds) Coastal GIS 2003. Wollongong University Papers in Center for Maritime Policy, Australia, p 14

  • Blaser P, Zimmermann S, Luster J (2000) Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci Total Environ 249:257–280

    Google Scholar 

  • Bloundi MK, Duplay J, Quaranta G (2009) Quaranta heavy metal contamination of coastal lagoon sediments by anthropogenic activities: the case of Nador (East Morocco). Environ Geol 56:833–843

    Google Scholar 

  • Braun M, Hubay K, Magyari E, Veres D, Papp I, Bálint M (2013) Using linear discriminant analysis (LDA) of bulk lake sediment geochemical data to reconstruct late glacial climate changes in the South Carpathian Mountains. Quat Int 293:114–122

    Google Scholar 

  • Caeiro S, Costa MH, Ramos TB, Fernandes F, Silveira N, Coimbra A, Medeiros G, Painho M (2005) Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecol Indic 5:151–169

    Google Scholar 

  • Chakrapani GJ (2002) Water and sediment geochemistry of Major Kumaun Himalayan lakes, India. Environ Geol 43:99–107

    Google Scholar 

  • Chakravarty M, Patgiri AD (2009) Metal pollution assessment in sediments of the Dikrong River, N.E. India. J Hum Ecol 27:63–67

    Google Scholar 

  • Chatterjee M, Silva FEV, Sarkar SK (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33:346–356

    Google Scholar 

  • Cheng Z, Man YB, Nie XP, Wong MH (2013) Trophic relationships and health risk assessments of trace metals in the aquaculture pond ecosystem of Pearl River Delta, China. Chemosphere 90:2142–2148

    Google Scholar 

  • Choi KY, Kim SH, Hong GH, Chon HT (2012) Distributions of heavy metals in the sediments of South Korean harbors. Environ Geochem Health 34:71–82

    Google Scholar 

  • Choudhary P, Routh J, Chakrapani GJ, Kumar B (2009a) Organic matter and stable isotopic record of paleoenvironmental changes in sediments from Nainital Lake in Kumaun Himalayas, India. J Paleolimnol 42:571–586

    Google Scholar 

  • Choudhary P, Routh J, Chakrapani GJ (2009b) An environmental record of changes in sedimentary organic matter from Lake Sattal in Kumaun Himalayas, India. Sci Total Environ 407:2783–2795

    Google Scholar 

  • Dahrazma B, Mulligan CN (2007) Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 69:705–711

    Google Scholar 

  • Das BK (2005) Environmental pollution impact on water and sediments of Kumaun lakes, lesser Himalaya, India: a comparative study. Environ Geol 49:230–239

    Google Scholar 

  • Doelsch E, Van de Kerchove V, Saint Macary H (2006) Heavy metal content in soils of Réunion (Indian Ocean). Geoderma 134:119–134

    Google Scholar 

  • DVWK (Deutsche Verband für Wasserwirtschaft und Kulturbau e.V.) (1998) Hydrogeochemische stoffsysteme. Heft 117, Teil II

  • Fianko JR, Laar C, Osei J, Anim AK, Gibrilla A, Adomako D (2013) Evaluation of some heavy metal loading in the Kpeshilagoon, Ghana. Appl Water Sci 3:311–319

    Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. Hemphills, Austin

    Google Scholar 

  • Gasser UG, Juchler SJ, Hobson WA, Sticher H (1995) The fate of chromium and nickel in subalpine soils derived from serpentinite. Can J Soil Sci 75:187–195

    Google Scholar 

  • Gaudette HE, Flight WR, Toner L, Folger DW (1974) An inexpensive titration method for the determination of organic carbon in recent sediments. J Sed Petrol 44:249–253

    Google Scholar 

  • Goher ME, Farhat HI, Abdo MH, Salem SG (2014) Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egypt J Aquat Res 40:213–224

    Google Scholar 

  • Gopal V, Kalpana G, Nethaji S, Jayaprakash M (2016a) Geochemical study of core sediments from Ennore Creek, North of Chennai, Tamil Nadu, India. Arab J Geosci 9:141

    Google Scholar 

  • Gopal V, Krishakumar S, Simon Peter T, Nethaji S, Suresh Kumar K, Jayaprakash M, Magesh NS (2016b) Assessment of trace element accumulation in surface sediments off Chennai coast after a major flood event. Mar Pollut Bull. doi:10.1016/j.marpolbul.2016.10.019

    Google Scholar 

  • Grousset FE, Quetel CR, Thomas B, Donard OFX, Lambert CE, Guillard F, Monaco A (1995) Anthropogenic vs. lithogenic origins of trace elements (As, Cd, Pb, Rb, Sb, Sc, Sn, Zn) in water column particles: northwestern Mediterranean Sea. Mar Chem 48:291–310

    Google Scholar 

  • Gu YG, Wang ZH, Lu SH, Jiang SJ, Mu DH, Shu YH (2012) Multivariate statistical and GIS based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China. Environ Pollut 163:248–255

    Google Scholar 

  • Gu YG, Li QS, Fang JH, He BY, Fu HB, Tong ZJ (2014a) Identification of heavy metal sources in the reclaimed farmland soils of the pearl river estuary in China using a multivariate geostatistical approach. Ecotoxicol Environ Saf 105:7–12

    Google Scholar 

  • Gu YG, Lin Q, Jiang SJ, Wang ZH (2014b) Metal pollution status in Zhelin Bay surface sediments inferred from a sequential extraction technique, South China Sea. Mar Pollut Bull 81:256–261

    Google Scholar 

  • Guo JN, Li JB, Wu JY (1983) Research on the distribution of Fe, Al, Mn in sediments of Bohai and its geochemical characteristics. Mar Sci 4:22–25

    Google Scholar 

  • Guo M, Wu W, Zhou X, Chen Y, Li J (2015) Investigation of the dramatic changes in lake level of the Bosten Lake in northwestern China. Theor Appl Climatol 119:341–351

    Google Scholar 

  • Hakanson L (1980) Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Google Scholar 

  • Hallare AV, Pagulayan R, Lacdan N, Köhler HR, Triebskorn R (2005) Assessing water quality in a tropical lake using biomarkers in zebrafish embryos: developmental toxicity and stress protein responses. Environ Monit Assess 104(1–3):171–187

    Google Scholar 

  • Han L, Gao B, Zhou H, Xu D, Wei X, Gao L (2015) The spatial distribution, accumulation and potential source of seldom monitored trace elements in sediments of Three Gorges Reservoir, China. Sci Rep Nat 5:16170. doi:10.1038/srep16170

    Google Scholar 

  • Harikumar PS, Jisha TS (2010) Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the south west coast of India. Int J Eng Sci Technol 2:840–850

    Google Scholar 

  • Harikumar PS, Nasir UP, Mujeebu Rahman MP (2009) Distribution of heavy metals in the core sediments of a tropical wetland system. Int J Environ Sci Technol 6:225–232

    Google Scholar 

  • Hasan AB, Kabir S, Reza AHMS, Zaman MN, Ahsan A, Rashid M (2013) Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary–Kumira) Chittagong, Bangladesh. J Geochem Explor 125:130–137

    Google Scholar 

  • Hasrizal S, Siti NH, Mohamad A, Khawar S, Joseph B, Yuzwan M (2015) Spatial Distribution of Selected Heavy Metals in Surface Sediments of the EEZ of the East Coast of Peninsular Malaysia. Int J Oceanogr (2015):1–10

    Google Scholar 

  • Hedges JI (2002) Sedimentary organic matter preservation and atmospheric O2 regulation. In: Gianguzza A, Pelizzetti E, Sammartano S (eds) Chemistry of marine water and sediments. Springer, New York, pp 105–123

    Google Scholar 

  • Herut B, Hornung H, Krom MD, Kress N, Cohen Y (1993) Trace metals in shallow sediments from the Mediterranean coastal region of Israel. Mar Pollut Bull 26:675–682

    Google Scholar 

  • Hlavay J, Prohaska T, Weisz M, Wenzel WW, Stingeder GJ (2004) Determination of trace elements bound to soil and sediment fractions (IUPAC technical report). Pure Appl Chem 76:415–442

    Google Scholar 

  • Hou D, He J, Lu C, Ren L, Fan Q, Wang J, Xie Z (2013) Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicol Environ Saf 93:135–144

    Google Scholar 

  • Iqbal J, Saleem M, Shah MH (2016) Spatial distribution, environmental assessment and source identification of metals content in surface sediments of freshwater reservoir, Pakistan. Chem Erde 76:171–177

    Google Scholar 

  • Islam M, Sallu S, Hubacek K, Paavola J (2014a) Limits and barriers to adaptation to climate variability and change in Bangladeshi coastal fishing communities. Mar Policy 43:208–216

    Google Scholar 

  • Islam MS, Han S, Ahmed MK, Masunaga S (2014b) Assessment of trace metal contamination in water and sediment of some rivers in Bangladesh. J Water Environ Technol 12:2

    Google Scholar 

  • Jiang X, Wang WW, Wang SH, Zhang B, Hu JC (2012) Initial identification of heavy metals contamination in Taihu Lake, a eutrophic lake in China. J Environ Sci 24:1539–1548

    Google Scholar 

  • Jumbe AS, Nandini N (2009) Heavy metals analysis and sediment quality values in urban lakes. Am J Environ Sci 5:678–687

    Google Scholar 

  • Kalpana G, Shanmugasundharam A, Nethaji S, Arya V, Kalaivanan R, Gopal V, Jayaprakash M (2016) Evaluation of total trace metal (TTMs) enrichment from estuarine sediments of Uppanar, southeast coast of India. Arab J Geosci 9:34

    Google Scholar 

  • Kargar M, Jutras P, Clark OG, Hendershot WH, Prasher SO (2013) Trace metal contamination influenced by land use, soil age, and organic matter in Montreal tree pit soil. J Environ Qual 42:1527–1533

    Google Scholar 

  • Katrina AK (1994) Early-Holocene geochemical evolution of saline Medicine Lake, South Dakota. J Paleolimnol 10:69–84

    Google Scholar 

  • Kim Y, Kim BK, Kim K (2010) Distribution and speciation of heavy metals and their sources in Kumho River sediment, Korea. Environ Earth Sci 60:943–952

    Google Scholar 

  • Koinig KA, Shotyk W, Lotter AF, Ohlendorf C, Sturm M (2003) 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake-the role of climate, vegetation, and land-use history. J Paleolimnol 30:307–320

    Google Scholar 

  • Krishakumar S, Ramasamy S, Chandrasekar N, Simon Peter T, Godson PS, Gopal V, Magesh NS (2016) Spatial risk assessment and trace element concentration in reef associated sediments of Van Island, southern part of the Gulf of Mannar, India. Mar Pollut Bull. doi:10.1016/j.marpolbul.2016.10.067

    Google Scholar 

  • Krishnakumar S, Ramasamy S, Magesh NS, Chandrasekar N, Simon Peter T (2015) Metal concentrations in the growth bands of Porites sp.: a baseline record on the history of marine pollution in the Gulf of Mannar, India. Mar Pollut Bull 101:409–416

    Google Scholar 

  • Kükrer S, Erginal AE, Şeker S, Karabıyıkoğlu M (2015) Distribution and environmental risk evaluation of heavy metal in core sediments from Lake Çıldır (NE Turkey). Environ Monit Assess 187:453. doi:10.1007/s10661-015-4685-1

    Google Scholar 

  • Kylander ME, Bindler R, Martínez Cortizas A, Gallagher K, Mörth CM, Rauch S (2013) A novel geochemical approach to paleorecords of dust deposition and effective humidity: 8500 years of peat accumulation at Store Mosse (the “Great Bog”) Sweden. Quat Sci Rev 69:69–82

    Google Scholar 

  • Lalah JO, Ochieng EZ, Wandiga SO (2008) Sources of heavy metal input into Winam gulf, Kenya. Bull Environ Contam Toxicol 81:277–284

    Google Scholar 

  • Lamb AL, Leng MJ, Lamb HF, Telford RJ, Umer M (2002a) Climatic and non-climatic effects on the δ 18O and δ 13C composition of Lake Awassa, Ethiopia, during the last 6.5Ka. Quat Sci Rev 21:2199–2211

    Google Scholar 

  • Lamb H, Kebede S, Leng MJ, Ricketts D, Telford R, Umer M (2002b) Origin and stable isotope composition of aragonite laminae in an Ethiopian crater lake. In: Odada E, Olago D (eds) The East African great lakes region: limnology, palaeoclimatology and biodiversity, advances in global research series. Kluwer Publishers, Dordrecht

    Google Scholar 

  • Leorri E, Mitra S, Irabien MJ, Zimmerman AR, Blake WH, Cearreta A (2014) A 700 year record of combustion-derived pollution in northern Spain: tools to identify the Holocene/Anthropocene transition in coastal environments. Sci Total Environ 470:240–247

    Google Scholar 

  • Lepane V, Varvas M, Viitak A, Alliksaar T, Heinsalu A (2007) Sedimentary record of heavy metals in Lake Liinjärv, southern Estonia. Est J Earth Sci 56:221–232

    Google Scholar 

  • Li J, Crowe SA, Miklesh D, Kistner M, Canfield DE, Katsev S (2012) Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, lake superior. Limnol Oceanogr 57:1634–1650

    Google Scholar 

  • Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013a) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83

    Google Scholar 

  • Li GG, Hu BQ, Bi JQ, Leng QN, Xiao CQ, Yang ZC (2013b) Heavy metals distribution and contamination in surface sediments of the coastal Shandong Peninsula (Yellow Sea). Mar Pollut Bull 76:420–426

    Google Scholar 

  • Liu WH, Zhao JZ, Ouyang ZY (2005) Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ Int 31:805–812

    Google Scholar 

  • Loring DH (1990) Lithium—a new approach for the granulometric normalization of trace metal data. Mar Chem 29:155–168

    Google Scholar 

  • Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci Rev 32:235–283

    Google Scholar 

  • Lv J, Zhang Z, Li S, Liu Y, Sun Y, Dai B (2014) Assessing spatial distribution, sources, and potential ecological risk of heavy metals in surface sediments of the Nansi Lake, Eastern China. J Radioanal Nucl Chem 299:671–1681

    Google Scholar 

  • Ma L, Wu J, Abuduwaili J, Liu W (2016) Geochemical responses to anthropogenic and natural influences in Ebinur lake sediments of Arid Northwest China. PLoS ONE 11(5):e0155819. doi:10.1371/journal.pone.0155819

    Google Scholar 

  • Mackie EAV, Leng MJ, Lloyd JM, Arrowsmith C (2005) Bulk organic δ13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin. J Quat Sci 20:303–312

    Google Scholar 

  • Magesh NS, Chandrasekar N, Roy VD (2011) Spatial analysis of trace element contamination in sediments of Tamiraparani estuary, southeast coast of India. Estuar Coast Shelf Sci 92:618–628

    Google Scholar 

  • Magesh NS, Chandrasekar N, Krishnakumar S, Glory M (2013) Trace element contamination in the estuarine sediments along Tuticorin coast Gulf of Mannar, southeast coast of India. Mar Pollut Bull 73:355–361

    Google Scholar 

  • Mester Z, Cremisini C, Ghiara E, Morabito R (1998) Comparison of two sequential extraction procedures for metal fraction in sediment samples. Anal Chim Acta 359:133–142

    Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 144:289–302

    Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Google Scholar 

  • Meyers and Ishiwatari (1993) Lacustrine organic geochemistry an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900

    Google Scholar 

  • Mil-Homens M, Branco V, Vale C, Boer W, Alt-Epping U, Abrantes F, Vicente M (2009) Sedimentary record of anthropogenic metal inputs in the Tagus prodelta (Portugal). Cont Shelf Res 29:381–392

    Google Scholar 

  • Mohan M, Shylesh Chandran MS, Jayasooryan KK, Ramasamy EV (2014) Mercury in the sediments of Vembanad Lake, western coast of India. Environ Monit Assess 186(6):3321–3336

    Google Scholar 

  • Moore VM, Stephanie EH, Lyubov RI, Eugene AS, Ekaterina VP, Boris KP (2009) Climate Change and the World’s “Sacred Sea”—Lake Baikal, Siberia. Biosci 59(5)405–417

    Google Scholar 

  • Mucha AP, Vasconcelos MTSD, Bordalo AA (2003) Macrobenthic community in the Doura estuary: relations with trace metals and natural sediment characteristics. Environ Pollut 121:169–180

    Google Scholar 

  • Müller G (1981) Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflüsse. Chem Ztg 6:64–157

    Google Scholar 

  • Nalovic L and Quantin P (1972) Evolution géochimique de quelques ClCments majeurs et traces dans un sol ferrallitique ferritique de Nouvelle-Calédonie issu de péridotites. Interprétation d’observations à l’aide de la microsonde de Castaing. Cali. ORSTOM, sér. Pédol. X(4):389–410

  • Purushothaman S, Renuka NR, Harikrishnan VS, Fernandez AC (2011) Temporal relation of cardiac hypertrophy, oxidative stress, and fatty acid metabolism in spontaneously hypertensive rat. Mol Cell Biochem 351:59–64

    Google Scholar 

  • Qingjie G, Jun D (2008) Calculating pollution indices by heavy metals in ecological geochemistry assessment; a case study in parks of Beijing. J China Univ Geosci 19:23–41

    Google Scholar 

  • Rajkumar M, Nagendran R, Kui JL, Wang HL, Sung ZK (2006) Influence of plant growth promoting bacteria and Cr(VI) on the growth of Indian mustard. Chemosphere 62:741–748

    Google Scholar 

  • Rodriguez-Martin JA, Ramos-Miras JJ, Boluda R, Gil C (2013) Spatial relations of heavy metals in arable and green house soils of a Mediterranean environment region (Spain). Geoderma 200–201:180–188

    Google Scholar 

  • Romic M, Romic D (2003) Heavy metals distribution in agricultural top soils in urban area. Environ Geol 43:795–805

    Google Scholar 

  • Routh J, Meyers PA, Gustafsson Ö, Baskaran M, Hallberg R, Schöldström A (2004) Sedimentary geochemical record of human-induced environmental changes in the Lake Brunnsviken watershed, Sweden. Limnol Oceanogr 49:1560–1569

    Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980

    Google Scholar 

  • Sakthivel R, Matheshwaran S, Thivya C, Akhila P, Yoganathan K (2015) Geoinformatics based natural disaster management—a case study from Yercaud Hills, Tamilnadu, India. Procedia Earth Planet Sci 11:346–353

    Google Scholar 

  • Saleem M, Iqbal J, Shah MH (2015) Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments—a case study from Mangla Lake, Pakistan. Environ Nanotechnol Monit Manag 4:27–36

    Google Scholar 

  • Schiff KC, Weisberg SB (1999) Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Mar Environ Res 48:161–176

    Google Scholar 

  • Schropp S, Lewis G, Windom H, Ryan J, Caldner F, Burney L (1990) Interpretation of metal concentrations in estuarine sediments of Florida using aluminium as a reference element. Estuaries 13:227–235

    Google Scholar 

  • Selvam AP, LaxmiPriya S, Kakolee B, Hariharan G, Purvaja R, Ramesh R (2012) Heavy metal assessment using geochemical and statistical tools in the surface sediments of Vembanad Lake, southwest coast of India. Environ Monit Assess 184:5899–5915

    Google Scholar 

  • Skoulikidis N, Kaberi H, Sakellariou D (2008) Patterns, origin and possible effects of sediment pollution in a Mediterranean lake. Hydrobiol 613(1):71–83

    Google Scholar 

  • Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sediment Petrol 24:151

    Google Scholar 

  • Sollins P, Spycher G, Glassman CA (1984) Net nitrogen mineralization from light-fraction and heavy fraction forest soil organic matter. Soil Biol Biochem 16:31–37

    Google Scholar 

  • Soto Jiménez MF, Páez-Osuna F, Morales-Hernández F (2001) Selected trace metals in oysters (Crassostreairidescens) and sediments from the discharge zone of the submarine sewage outfall in Mazatlán Bay (SE Gulf of California): chemical fractions and bioaccumulation factors. Environ Pollut 114:357–370

    Google Scholar 

  • Soubrand-Colin M, Néel C, Bril H, Grosbois C, Caner L (2007) Geochemical behaviour of Ni, Cr, Cu, Zn and Pb in an Andosol-Cambisolclimosequence on basaltic rocks in the French Massif Central. Geoderma 137:340–351

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  • Su S, Xiao R, Mi X, Xu X, Zhang Z, Wu J (2013) Spatial determinants of hazardous chemicals in surface water of Qiantang River, China. Ecol Indic 24:375–381

    Google Scholar 

  • Sundararajan M, Srinivasalu S (2010) Geochemistry of core sediments from Gulf of Mannar, India. Int J Environ Res 4:861–876

    Google Scholar 

  • Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy VJ (2011) Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Appl Radiat Isot 69:1466–1474

    Google Scholar 

  • Szefer P, Geldon J, Ali AA, Páez-Osuna F, RuizFernandes AC, Galvan SRG (1998) Distribution and association of trace metals in soft tissue and byssus of Mitellastrigata and other benthal organisms from Mazatlan harbour, mangrove lagoon of the northwest coast of Mexico. Environ Int 24:359–374

    Google Scholar 

  • Tam NFY, Wong WS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205

    Google Scholar 

  • Tang W, Shan B, Zhang H, Mao Z (2010) Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. J Hazard Mater 176:945–951

    Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–850

    Google Scholar 

  • Tippie VK (1984) An environmental characterization of Chesapeake Bay and a framework for action. In: Kennedy V (ed) The estuary as a filter. Academic Press, New York, pp 467–487

    Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen 33(1–4):566–575

  • Trolard F, Bourrie G, Jeanroy E, Herbillon AJ, Martin H (1995) Trace-metals in natural iron-oxides from laterites—a study using selective kinetic extraction. Geochim Cosmochim Acta 59:1285–1297

    Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192

    Google Scholar 

  • Usha N, Madan M, Deepthi K (2014) Mangrove sediments a sink for heavy metals? An assessment of Muthupet mangroves of Tamil Nadu, southeast coast of India. Environ Earth Sci 72:1255–1270

    Google Scholar 

  • Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364

    Google Scholar 

  • Venkatachalapathy R, Nandhakumar G, Karthikeyan P (2014) Diatoms and water quality assessment of the Yercaud Lake, Salem District, Tamil Nadu, South India. Gondwana Geol Mag Spec 15:13–16

    Google Scholar 

  • Vijayaraj R, Achyuthan H (2015) Distribution of sediments and organic matter source: Berijam Lake, Tamil Nadu. J Geol Soc India 86(5):620–626

    Google Scholar 

  • Vijayaraj R, Achyuthan H (2016) Organic matter source in the freshwater tropical lakes of southern India. Curr Sci 111(1). doi:10.18520/cs/v111/i1/168-176

  • Vreĉa P, Muri G (2006) Changes in accumulation of organic matter and stable carbon and nitrogen isotopes in sediments of two Slovenian mountain lakes (Lake Ledvica and Lake Planina), induced by eutrophication changes. Limnol Oceanogr 51:781–790

    Google Scholar 

  • Wang J, Liu R, Zhang P, Yu W, Shen Z, Feng C (2014a) Spatial variation: environmental assessment and source identification of heavy metals in sediments of the Yangtze River Estuary. Mar Pollut Bull 87:364–373

    Google Scholar 

  • Wang LF, Yang LY, Kong LH, Li S, Zhu JR, Wang YQ (2014b) Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China. J Geochem Explor 140:87–95

    Google Scholar 

  • Wantzen KM, Rothhaupt KO, Mört M, Cantonati M, Tóth LG, Fischer PE (2008) Ecological effects of water-level fluctuations in lakes. Springer, Berlin

    Google Scholar 

  • Wei C, Wen H (2012) Geochemical baselines of heavy metals in the sediments of two large freshwater lakes in China: implications for contamination character and history. Environ Geochem Health 34(6):737–748

    Google Scholar 

  • Wu Y, Hou X, Cheng X, Yao S, Xia W, Wang S (2007) Combining geochemical and statistical methods to distinguish anthropogenic source of metals in lacustrine sediment: a case study in Dongjiu Lake, Taihu Lake catchment, China. Environ Geol 52:1467–1474

    Google Scholar 

  • Zahra A, Hashni MZ, Malik RN, Ahmed Z (2014) Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci Total Environ 470–471:925–933

    Google Scholar 

  • Zeng H, Wu J, Liu W (2014) Two-century sedimentary record of heavy metal pollution from Lake Sayram: a deep mountain lake in central Tianshan, China. Quat Int 321:125–131

    Google Scholar 

  • Zhang LP, Ye X, Feng H (2007) Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Mar Pollut Bull 54:974–982

    Google Scholar 

  • Zhao S, Feng CH, Yang YR, Niu JF, Shen ZY (2012) Risk assessment of sedimentary metals in the Yangtze Estuary: new evidence of the relationships between two typical index methods. J Hazard Mater 241:164–172

    Google Scholar 

  • Zong Y, Lloyd JD, Leng MJ, Yim WWS, Huang GQ (2006) Reconstruction of the Holocene monsoon history from the Pearl River Estuary, southern China, using diatoms and organic carbon isotope ratios. Holocene 16:251–263

    Google Scholar 

  • Zsefer P, Glasby GP, Sefer K, Pempkowiak J, Kaliszan R (1996) Heavy metal pollution in superficial sediments from the Southern Baltic Sea off Poland. J Environ Sci Health 31(A):2723–2754

Download references

Acknowledgements

Gopal V is grateful to the UGC, New Delhi, for the Dr. D.S.Kothari Postdoctoral Fellowship (No. F.4-2/2006 (BSR)/ES/14-15/0020) for the financial support. The authors thank the Tamil Nadu Tourism Department, Yercaud, for granting permission to work and collect lake sediment samples. The authors thank the anonymous reviewers for their constructive comments that helped in the presentation of the work and the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Achyuthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, V., Achyuthan, H. & Jayaprakash, M. Assessment of trace elements in Yercaud Lake sediments, southern India. Environ Earth Sci 76, 63 (2017). https://doi.org/10.1007/s12665-017-6390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6390-6

Keywords

Navigation