Skip to main content

Advertisement

Log in

Quantitative comparative geomorpholgical analysis of fluvial and karst relief of Florida

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Karst relief of Central Florida and fluvial relief of the Florida Panhandle were analyzed and compared on the basis of standardized samples of karst and fluvial topography derived from digital databases in a GIS environment. Comparative geomorphological analyses of the two distinct genetic relief types were performed on the basis of morphometric parameters derived for each type of relief in general as well as differentially for hypsometric intervals of paleo-marine terraces with the assumption of relative stability of tectonic conditions of the underlying carbonate platform. The comparative analyses conducted indicate overall higher values of the morphometric parameters in the fluvial relief compared to those in the karst relief. This is a consequence of more than two times higher rates of fluvial denudation compared to the karst denudation rates (0.23 vs. 0.11 mm/year, respectively). Differential analyses with respect to the paleo-marine terrace intervals reveal significant quantitative morphological differences between the upper, older and lower, younger terrace intervals in the karst and fluvial relief. In the two older terrace intervals, fluvial and karst denudation rates range from 0.07 to 0.09 mm/year, while in the younger terrace intervals fluvial denudation shows more than two times higher rates than the karst denudation (0.22 and 0.55 vs. 0.11 and 0.19 mm/year), indicating that fluvial processes in the study area are more effective than the respective karst processes. This is clearly reflected in the higher values of vertical dissection and denudated sediment volume in the fluvial relief in the younger terrace intervals, while the increased karst denudation rates are not yet reflected in the respective morphometric parameters due to the slower morphologic response. Overall, long-term karst denudation ranging from 0.07 to 0.19 mm/year is derived by volumetric analysis of the denudated sediment and as such accounts for the effects of both chemical and mechanical denudation. Consequently, they are significantly higher than the previously calculated short-term solutional denudation rates, although their values fall in the mid range of theoretical estimations with respect to climatic conditions of the study area. The obtained fluvial denudation rates ranging from 0.07 to 0.55 mm/year are similar to previous estimates of long-term fluvial denudation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahnert F (1970) Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins. Am J Sci 268:243–263

    Article  Google Scholar 

  • Akerman JH (1983) Notes on chemical weathering, Kapp Linne, Spitzbergen. Proceedings 4th International Conference on Permafrost, National Academy Press, Washington DC: 10-15

  • Allred K (2004) Some carbonate erosion rates of south-east Alaska. J Cave Karst Stud 66:89–97

    Google Scholar 

  • Bahtijarevic A (1989) Sinkhole Density of the Forest City Quadrangle. Engineering and Environmental Impacts of Sinkholes and Karst, Proceedings of the Third Multidisciplinary Conference on Sinkholes and the Environmental Impacts of Karst, Saint Petersburg Beach, Florida, pp 75–82

  • Bahtijarevic A (1996) Karst Landforms in Florida, Geomorphological Analysis. Master Thesis, University of South Florida

  • Bahtijarevic A (2010) Geografski informacijski sustav u usporednoj geomorfološkoj analizi krškog i fluvijalnog reljefa Floride. Dissertation, University of Zagreb

  • Bakalowicz M (1992) Géochimie des eaux et flux de matières dissoutes: l’approche objective du rôle du climat dans le karstogénèse. In: Salomon JN, and Maire R (eds) Karst et évolutions climatique Presses Universitaires, Bordeaux, pp 61–74

  • Balazs D (1968) Karst regions in Indonesia. Karszt-Es Barlangkutatas, Volume 5 Budapest, Globus nyomda, p 61

  • Ballut C, Faivre S (2012) New data on the dolines of the Velebit Mountain: an evaluation of their sedimentary archive potential in the reconstruction of landscape evolution. Acta Carsologica 41(1):59–74

    Google Scholar 

  • Basso A, Bruno E, Parise M, Pepe M (2013) Morphometric analysis of sinkholes in a karst coastal area of southern Apulia (Italy). Environ Earth Sci 70:2545–2559

    Article  Google Scholar 

  • Bögli A (1971) Karstdenudation—das Ausmass des korrosiven Kalkabtrages Regio Basiliensis 12(2):352–361

    Google Scholar 

  • Bradley JT (1972) Climate of Florida. Climatography of the United States No. 60-8, United States Department of Commerce, Washington DC, pp 45–70

  • Brinkman R, Parise M, Dye D (2008) Sinkhole distribution in a rapidly developing urban environment: Hillsborough County, Tampa Bay area, Florida. Eng Geol 99(3–4):169–184

    Article  Google Scholar 

  • Buzjak N, Petković A, Faivre S (2013) Intenzitet prirasta i supkutane krške korozije u dolini rijeke Krke (Hrvatska)/The Intensity of Increment and of Subcutaneous Karst Corrosion in the Krka River Valley (Croatia)/. Hrvatski geografski glasnik 75(2):59–79

    Google Scholar 

  • Collingnon B (1986) Hydrogéologie appliquée des aquifères karstiques, thèse de doctorat, Univ Avignon, 280

  • Corbel J (1959a) Erosion en terrain calcaire (vitesse d’érosion et morphologie) Annales de Géographie 68, 97–120. Prog Phys Geogr 32(6):684–690

    Google Scholar 

  • Corbel J (1959b) Karsts du Yucatan et de la Floride. Bulletin de L’association de geography Francais 280–281:2–14

    Article  Google Scholar 

  • Cucchi F, Forti F, Finocchiaro F (1987) Carbonate surface solution in the classical karst. Int J Speleol 16:125–138

    Article  Google Scholar 

  • Cucchi F, Forti F, Ulcigrai F (1994) Degradation by dissolution of carbonate rocks. Acta Carsologica 23:55–62

    Google Scholar 

  • Cucchi F, Forti F, Marinetti E (1995) Surface degradation in the carbonate rocks of the karst of Trieste In Fornos JJ, Ginès A (Eds), Karren landforms. Proceedings of the international symposium on karren landforms, pp 41–51

  • Cunha L (1998) Les karsts portugais Problèmes et perspectives. Karstologia 28:41–48

    Google Scholar 

  • Davies JR, Lagueux KM, Sanderson B, Beechle TJ (2007) Modeling stream channel characteristics from drainage-enforced DEMs in Puget Sound, Washington, USA. J Am Water Resour Assoc 43(2):414–426

    Article  Google Scholar 

  • Delannoy J-J (1984) Le Vercor: un massif de la moyenne montagne alpine. Karstologia 3:34–45

    Google Scholar 

  • Demangeot J (1965) Géomorphologie des Abruzzes adriatique. thèse d’Etat, CNRS, 403

  • Demangeot J (1976) Les espaces naturels tropicaux. Coll Géographie, Masson, éd Paris

  • Devun Ph (1968) Climat et morphologie de impluvium karstique de Vaucluse. Actes Réunion internat. Karstologie Languedoc-Provence, Etudes et Travaux Méditerranée 7:93–108

  • Dixon J, Thorn C (2005) Chemical weathering and landscape development in midlatitude alpine environments. Geomorphology 67:127–145

    Article  Google Scholar 

  • Fabre G (1981) Les karsts du Languedoc oriental: recherches hydrogéomorphologique, thèse d’Etat, Mém AFK n°2, Aix-en-Provence, p 470

  • Faivre S (2007) Analyses of the Velebit Mountain ridge crests, Hrvastki geografski glasnik, Vol. 69 Br 2: 21–40

  • Faivre S, Pahernik M (2007) Structural influences on the spatial distribution of dolines Island of Brač, Croatia. Z Geomorph NF 51(4):487–503

    Article  Google Scholar 

  • Faivre S, Reiffsteck P (1999) Spatial distribution of dolines as an indicator of recent deformations on the Velebit mountain range. Géomorphologie: relief, Processus, Environnement: 129–142

  • Faivre S, Reiffsteck P (2002) From doline distribution to tectonic movements example of the Velebit mountain range Croatia. Acta carsologica 31(3):139–154

    Google Scholar 

  • Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, p 562

    Book  Google Scholar 

  • Forti F (1984) Messungen des Karstabtrages in der Region Friul-Julisch-Venetien (Italien). Die Höhle 35(3/4):135–139

    Google Scholar 

  • Fournier F (1960) Climat et erosion. PUF, Paris

    Google Scholar 

  • Furlani S, Cucchi F, Forti F, Rossi A (2009) Comparison between coastal and Inland Karst limestone lowering rates in the northeastern Adriatic Region (Italy and Croatia). Geomorphology 104:73–81

    Article  Google Scholar 

  • Gabrovšek F (2009) On concepts and methods for the estimation of dissolutional denudationrates in karst areas. Geomorphology 106:9–14

    Article  Google Scholar 

  • Gams I (1972) Effect of runoff on corrosional intensity in the northwest Dinaric karst. Trans Cave Res Group GB 14(2):78–83

    Google Scholar 

  • Gams I (1981) Comparative research of limestone solution by means of standard tablets. 8th International Congress of Speleology Proceedings, Bowling Green, Kentucky, USA, pp 273–275

  • Gams I (1985) International comparative measurements of surface solution by means of standard limestone tablets. Zbornik Ivana Rakovca XXVI:361–386

  • Gao Y (2008) Spatial operations in a GIS based karst feature database. Environ Geol 54:1017–1027

    Article  Google Scholar 

  • Gao Y, Alexander EC Jr (2008) Sinkhole hazard assessment using a decision tree model. Environ Geol 54(5):945–956

    Article  Google Scholar 

  • Gao Y, Alexander, ECJr, Bounk M, Tipping RG (2005) Metadata development for a multi-state karst feature database. Sinkholes and the engineering and environmental impacts of karst, Proceedings of the 10th Multidisciplinary Conference, San Antonio,Texas, pp 629–638

  • Gilbert GK (1877) Geology of the Henry Mountains (Utah).US. Geographical and Geological Survey of the Rocky Mountains Region, US. Government Printing Office, Washington D.C. pp 170

  • Gilbert J, Laurent R, Maire R (1983) Carte hydrogéomorphologique, hydrogéologie et hydrochimie du karst de Dorran (Ain). Karstologia 2:33–40

    Google Scholar 

  • Goldberg ED (1976) The health of the oceans. UNESCO, Paris 169

    Google Scholar 

  • Green JA, Marken WJ, Alexander EC Jr, Alexander CS (2002) Karst unit mapping using geographic information system technology, Mower County, Minnesota, USA. Environ Geol 42(5):457–461

    Article  Google Scholar 

  • Hakim B (1963) Recherches hydrologique et hydrochimique sur quelques karst mediterraneens: Liban, Syrie et Maroc. these d’Etat de Geographie, Univ Aix-Marseille II, p 667

  • Hakim B (1985) Recherches hydrologiques et hydrochimiques sur quelques karsts méditerranéens: Liban, Syrie et Maroc, Publications de l’Université Libanaise, Section1985 des études géographiques, tome II, p 701

  • Häuselman P (2008) Surface corrosion of an Alpine karren field: recent measurements at Innerbergli (Siebenhengste, Switzerland). Int J Speleol 37(2):107–111

    Article  Google Scholar 

  • Healy HG (1975) Terraces and shorelines of Florida. USGS Map Series No. 71

  • Hutchinson M F, Gallant JC (2005) Representation of terrain. In: Longley PA (ed) Geographical information systems: principles, techniques, management and applications, 2nd Eddition, Abridged, Vol. 1, pp 105–124

  • Jansen JHL, Painter RB (1974) Predicting sediment yield from climate and topography. J Hydrol 21:371–380

    Article  Google Scholar 

  • Jones RR, Wawrzyniec TF, Holliman NS, McCaffrey JW, Imber J, Holdsworth E (2008) Describing the dimensionality of geospatial data in the earth sciences—recommendations for nomenclature. Geosphere 4(2):354–359

    Article  Google Scholar 

  • Julian M (1976) Les Alpes Maritimes franco-italiennes, étude morphologique. thèse Univ Aix-Marseille, H Champion éd

  • Klitgord DK, Popenoe P, Schouten H (1984) Florida: a jurassic transform plate boundary. J Geophys Res 89(B9):7753–7772

    Article  Google Scholar 

  • Krawczyk WE (2008) The range of chemical denudation rates on Svalbard. Geophysical Research Abstracts 10, EGU General Assembly 2008

  • Krklec K (2011) Corrosion of carbonate rocks and genesis of relief on Vis Island—correlation with selected coastal localities. Dissertation, University of Zagreb

  • Kunaver J (1979) Some experiences in measuring the surface karst denudation in high alpine environment. Actes du Symposium international sur l’érosion karstique, Aix en Provence, pp 75–85

  • Lauritzen SE (1990) Autogenic and allogenic denudation in carbonate karst by the multiple basin method: an example from Svartisen, North Norway. Earth Surf Processes Landforms 15(2):157–169

    Article  Google Scholar 

  • Lin Z, Oguchi T (2006) DEM analysis on longitudinal and transverse profiles of steep mountainous watersheds. Geomorphology 78:77–89

    Article  Google Scholar 

  • Lyew-Ayee P, Viles HA, Tucker GE (2007) The use of GIS-based digital morphometric techniques in the study of cockpit karst. Earth Surf Process Landf 32(2):165–179

  • MacNeil FS (1950) Pleistocene shore lines in Florida and Georgia. US Geological Survey Professional Paper 221:1–31

  • Maire R (1982) Recherches hydrogéomorphologiques et spéléologiques sur le bassin-versant du Saint Georges et le réseau du BU56 (—1338 m) (Navarre et Pyrénées Atlantiques). Rev Géog Alp 70:215–225

    Article  Google Scholar 

  • Maire R (1989) La haute montagne calcaire. Karstologia-Mémoire, n°3, Ed Gap: 731

  • Maire R (1999) Les glaciers de marbre de Patagonie. Chili Karstol 33:25–40

    Google Scholar 

  • Meybeck M (1976) Total annual dissolved transport by world major rivers. Hydrol Sci Bull 21:265–289

    Article  Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91:1–21

    Article  Google Scholar 

  • Nicod J (1972) Pays et paysage du calcaire. Coll Sup, PUF, Paris, p 244

  • Ozdemir H, Bird D (2008) Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ Geol 56(7):1405–1415

    Article  Google Scholar 

  • Pahernik M (1998) Utjecaj klime i reljefa na intenzitet površinske korozije karbonata gorske skupine Velike Kapele. Acta Geographica Croatica 33:47–57

    Google Scholar 

  • Pahernik M (2012) Prostorna gustoća ponikava na području Republike Hrvatske. Hrvatski geografski glasnik 74(2):5–26

    Google Scholar 

  • Palmer AN (1996) Rates of limestone dissolution and calcite precipitation in cave streams of east-central New York State. Abstracts of Northeastern Section meeting. Geol Soc Am 28(3):89

    Google Scholar 

  • Plan L (2005) Factors controlling carbonate dissolution rates quantified in a field test in the Austrian Alps. Geomorphology 68:202–212

    Article  Google Scholar 

  • Priesnitz K (1974) Losungsraten und irhe geomorphologische Relevanz Abhandlungen Akademie der Wissenschaften in Gottingen. Matematisch-Physikalische Klasse 3, Folge 29: 68084

  • Pulina M (1971) Observations on the chemical denudations of some karst areas of Europe and Asia. Studia Geomorph Carpatho-Balcanica 5:79–92

    Google Scholar 

  • Rossi G (1976) Karst et dissolution des calcaires en milieu topical. Zeit Fur Geomorph, suppl 26

  • Saadat H, Bonnell R, Sharifi F, Mehuys G, Namdar M, Ale-Ebrahim S (2008) Landform classification from a digital elevation model and satellite imagery. Geomorphology 100(3–4):453–464

    Article  Google Scholar 

  • Salomon JN (1987) Le gouffre des Tourettes ou la montagne qui accouche d’un trou (de suris). Karstologia, n°10, p 52

  • Salomon JN (2000) Précis de Karstologie. Presses universitaires de Bordeaux, p 250

  • Sauro U, Ferrarese F, Francese R, Miola A, Mozzi P, Rondo GQ, Trombino L, Valentini G (2009) Doline fills—case study of the faverghera plateau (Venetian pre-Alps, Italy). Acta Carsologica 38(1):51–63

    Article  Google Scholar 

  • Schumm SA (1963) The disparity between present rates of denudation and orogeny. US Geol Surv Prof Paper 454-H:1–12

    Google Scholar 

  • Scott TM (1992) A Geological Overview of Florida, In: Scott TM, Lloyd JM, Maddox GL and Copeland R (ed) Florida’s groundwater quality monitoring program—hydrogeologic framework, Florida Geological Survey Special Publication 32:4–12

  • Copeland R, Upchurch SB, Scott, TM, Kromhout C, Arthur J, Means G, Rupert F, Bond P (2009) Hydrogeological Units of Florida. Florida Geological Survey, Special Publication No. 28 (Revised)

  • Scott T M, Campbell KM, Rupert R, Arthur D, Green RC, Means GH, Missimer TM, Lloyd JM, Yon JW, Duncan G (2001) Geological Map of the State of Florida. Florida Department of Environmental Protection

  • Scott TM, Means GH, Meegan RP, Means RC, Upchurch SB, Copeland RE, Jones J, Roberts T, Willet A (2004) Springs of Florida. Florida Geological Society Bulletin No. 66, Special publication, 677

  • Sinclair WC, Stewart JW (1985) Sinkhole type, development and distribution in Florida. United States Geological Survey, Florida Geological Survey Map Series No. 110

  • Sinclair WC, Stewart JW, Knutilla RL, Gilboy AE, Miller RL (1985) Types, features and occurrence of sinkholes in the karst of west—central Florida. US Geol Surv Water Resour Investig Rep 85–4126:81

    Google Scholar 

  • Smith DI, Atkinson TC (1976) Process, landforms and climate in limestone regions. In: Derbyshire E (ed) Geomorphology and climate. Wiley, pp 369–409

  • Smith DI, Greenaway MA, Moses Spate AP (1995) Limestone weathering in eastern Australia, Part I: erosion rates. Earth Surf Proc Land 20:451–463

    Article  Google Scholar 

  • Spate AP, Jennings JN, Smith DI, Greenaway MA (1985) The micro-erosion meter: use and limitations. Earth Surf Proc Land 10:427–440

    Article  Google Scholar 

  • Stanford SD, Ashley GM, Russell EWB, Brenner GJ (2002) Rates and patterns of late Cenozoic denudation in the northernmost Atlantic Coastal Plain and Piedmont. Geol Soc Am Bull 114(11):1422–1437

    Article  Google Scholar 

  • Summerfield M (1996) Global geomorphology. Prentice Hall, Pearson 537

    Google Scholar 

  • Sweeting MM (1980) Karst and climate—a review. Zeit für Geomorph suppl 36:203–216

    Google Scholar 

  • Taminiskas J, Marcinkevicius V (2002) Karst geoindicators of environmental change: the case of Lithuania. Environ Geol 42(7):757–766

    Article  Google Scholar 

  • Tihansky AB, Knochenmus LA (2001) Karst features and hydrogeology in West-central Florida—a field perspective. In: Kuniansky EL (ed) United States Geological Survey Karst Interest Group Proceedings, Water Resources Investigation Report 01–4011:198–211

  • Upchurch SB (1989) Karst of Florida. In: The Lithostratigraphy and Hydrostratigraphy of the Floidan Aquifer System, Field Trip Guidebook T 185, 28th International Geological Congress, American Geophysical Union

  • Upchurch SB, Lawrence FW (1981) Impact on groundwater chemistry on sinkhole development along a retreating scarp. Sinkholes: Their Geology, Engineering and Environmental Impact, Proceedings of the First Multidisciplinary Congerence on Sinkholes, Orlando, Florida, pp 23–28

  • Walling DE, Webb BW (1983) Patterns of sediment yield. In: KJ Gregory (ed) background to paleohydrology, Wiley, pp 69–100

  • White WA, (1970) The geomorphology of the Florida peninsula. Florida Bureau of Geology, Bulletin no. 51, p 164

  • White WB (1984) Rate process: chemical kinetics and karst landform development. In: LaFleur RG (ed) Groundwater as a geomorphic agent. Allen and Unwin, Boston, pp 227–248

    Google Scholar 

  • White WB (1988) Geomorphology and hydrology of carbonate terrains. Oxford University Press, Oxford, p 480

    Google Scholar 

  • White WB (2000) Dissolution of limestone from field observations. In: Klimchouk AB, Ford DC, Palmer A, Dreybrodt W Speleogenesis evolution of karst aquifers. NSS, Huntsville, pp 149–155

  • White WB (2007) Evolultion and age relations of karst landscapes. Acta Carsologica 36(1):45–52

    Article  Google Scholar 

  • Williams P (1963) An initial estimate of the speed of limestone solution in County Clare. Irish Geogr 4(6):432–444

    Article  Google Scholar 

  • Zang, D, Fischer, H, Bauer, B, Pavuza, R I Mais, K (1995) Field tests of limestone dissolution rates in karstic Mt Krauterin, Austria. Cave and Karst Science, Vol. 21, British Cave Research Associatoin, pp 101–104

Download references

Acknowledgments

This research was partly supported by the Ministry of Science, Education and Sport of Republic of Croatia (Project 1191191306-1305). We are especially grateful to Mladen Pehernik for fruitful discussions and suggestions. Software used for data processing and geospatial and morphometric analyses in this study (ArcGIS with extensions) was granted by ESRI, Redlands, California. We are most grateful to Jack Dangermond, the founder and president of ESRI for his support and to Ivica Rendulić for the help with graphical presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Bahtijarević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahtijarević, A., Faivre, S. Quantitative comparative geomorpholgical analysis of fluvial and karst relief of Florida. Environ Earth Sci 75, 428 (2016). https://doi.org/10.1007/s12665-016-5397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5397-8

Keywords

Navigation