Skip to main content
Log in

Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers, Iran

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Tabriz area is one of the most industrialized areas in northwest of Iran. The heavy industrialization and the increasing urbanization are responsible for the rapidly increasing stress on the groundwater of the area. The objective of this study was to evaluate heavy metals such as Fe, Mn, Al, Zn, As and Cr in groundwater and their spatial distribution in Tabriz plain aquifer. The concentrations of Fe, Cr, Mn, As, and Al in some of the groundwater samples exceed the maximum admissible concentration (MAC). Correlation matrix (CM) and principal components analysis (PCA) methods were employed to identify source apportionment of contamination parameters in groundwater. There are two types of aquifers, with different quality of water, in the plain; an unconfined aquifer with saline water and a confined aquifer with fresh water quality. Arsenic concentrations in the unconfined aquifer and in the recharge areas of the plain boundary are low, with an average of 25.8 µg/L, while in the confined aquifer and deep wells the concentrations are high, with an average of 122.5 µg/L. The arsenic occurring in groundwater resources of the area originates from geological formations such as alluvial tuffs of Sahand mountain and its concentration is highly dependent on hydrogeological and environmental reducing conditions, residence time of water and depth of the sampling wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adepoju-Bello AA, Ojomolade OO, Ayoola GA, Coker HAB (2009) Quantitative analysis of some toxic metals in domestic water obtained from Lagos metropolis. Nig J Pharm 42(1):57–60

    Google Scholar 

  • Allen JP, Torres IG (1991) Physical separation techniques for contaminated sediment. In: Li NN (ed) Recent developments in separation science. CRC Press, West Palm Beach

    Google Scholar 

  • Allison JD, Brown DS, Novo-Gradac KJ (1990) MINTEQA2/PRODEFA2—a geochemical assessment model for environmental systems—version 3.0 user’s manual. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Athens

    Google Scholar 

  • Anawar HM, Akai J, Sakugaqa H (2003) Mobilization of Arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere 54:753–762

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington

    Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam

    Book  Google Scholar 

  • Asghri Moghaddam A (1991) The hydrogeology of the Tabriz area, Iran. Ph.D. Thesis, Department Of Geological Sciences, University College London

  • Asghri Moghaddam A, Allaf Najib M (2006) Hydrogeologic characteristics of the alluvial tuff aquifer of northern Sahand Mountain slopes, Tabriz. Iran Hydro J 14(7):1319–1329

    Google Scholar 

  • Ayotte JD, Montgomery DL, Flanagan SM, Robinson KW (2003) Arsenic in groundwater in eastern New England: occurrence, controls, and human health implications. Environ Sci Technol 37(10):2075–2083

    Article  Google Scholar 

  • Ball JW, Izbicki JA (2004) Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California. Appl Geochem 19:1123–1135

    Article  Google Scholar 

  • Barcelona MJ, Holm TR, Schock MR, George GK (1989) Spatial and temporal gradients in aquifer oxidation–reduction conditions. Water Resour Res 25:991–1003

    Article  Google Scholar 

  • Batayneh A, Ghrefat H, Zaman H, Mogren S, Zumlot T, Elawadi E, Laboun A, Qaisy S (2012) Assessment of the physicochemical parameters and heavy metals toxicity: application to groundwater quality in unconsolidated shallow aquifer system. Res J Environ Toxicol 6:169–183

    Article  Google Scholar 

  • Berberian M (1976) Contribution to the Seismotectonics of Iran (Part II). In: Geological survey of Iran, Report No. 39, 518 P, 5 maps, 259 figures

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51:359–365

    Google Scholar 

  • Bhagure GR, Mirgane SR (2011) Heavy metal concentrations in groundwater and soils of Thane region of Maharashtra, India. Environ Monit Assess 173:643–652

    Article  Google Scholar 

  • Bhattacharya P, Jacks G, Ahmed KM, Khan AA, Routh J (2002) Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bull Environ Contam Toxicol 69:538–545

    Article  Google Scholar 

  • Borah KK, Bhuyan B, Sarma HP (2009a) Lead, arsenic, fluoride, and iron contamination of drinking water in the tea garden belt of Darrang district, Assam, India. Environ Monit Assess 169(1–4):347–352. doi:10.1007/s10661-009-1176-2

    Google Scholar 

  • Borah KK, Bhuyan B, Sarma HP (2009b) Heavy metal contamination of groundwater in the tea garden belt of Darrang District, Assam, India. E-J Chem 6:501–507

    Article  Google Scholar 

  • Brown CJ, Walter DA, Colabufo S (1999) Fe in the aquifer system of Suffolk County, New York. US Geol Surv Wat Resour Invest Rep 99(4126):10

    Google Scholar 

  • Buragohain M, Bhuyan B, Sarma HP (2010) Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environ Monit Assess 170(1–4):345–351. doi:10.1007/s10661-s10661-009-1237-6

    Article  Google Scholar 

  • Chakraborti D, Basu GK, Biswas BK, Chowdhury UK, Rahman MM, Paul K, Chowdhury TR, Chanda CR, Lodh D, Ray SL (2001) Characterization of arsenic-bearing sediments in the Gangetic delta of West Bengal, India. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic Exposure and Health Effects IV. Elsevier Science Ltd, Oxford, pp 27–52

    Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Choudhury UK, Sengupta MK, Lodh D (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58(1):3–22

    Article  Google Scholar 

  • Christensen JB, Christensen TH (1999) Complexation of Cd, Ni, and Zn by DOC in polluted groundwater: a comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2). Environ Sci Tech 33:3857–3863

    Article  Google Scholar 

  • Christensen TH, Astrup T, Boddum JK, Ostergaard Hansen B, Redemann S (2000) Copper and zinc distribution coefficients for sandy aquifer materials. Water Res 34:709–712

    Article  Google Scholar 

  • Cox EJ (1991) What is the basis for using diatoms as monitors of river quality. In: Whitton BA, Rott E, Friedrich G (eds) Use of Algae for Monitoring rivers. Institute of Botanik, University of Innsbruck, pp 33–40

  • Das B, Rahman MM, Nayak B, Pal A, Chowdhury UK, Mukherjee SC (2009) Groundwater arsenic contamination, its health effects and approach for mitigation in West Bengal, India and Bangladesh. Water Qual Expo Health 1:5–21

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New York, p 646

    Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT (1991) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Tech 26:96–101

    Article  Google Scholar 

  • Dollar NL, Souch CJ, Filippelli GM, Mastalerz M (2001) Chemical fractionation of metals in wetland sediments: Indiana Dunes National Lakeshore. Environ Sci Technol 35:3608–3615

    Article  Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York, p 824

    Google Scholar 

  • Drever JI (1997) The Geochemistry of Natural Waters, 3rd edn. Prentice-Hall, Englewood Cliffs, p 436

    Google Scholar 

  • Duruibe JO, Oguwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Physical Sci 2(5):112–118

    Google Scholar 

  • Elinder CG (1986) Handbook on the toxicology of metals Iron. In: Friberg L, Nordberg GF, Vouk VB (eds) vol. II. Elsevier, Amsterdam, pp 276–297

    Google Scholar 

  • Enghag P (2004) Encyclopedia of the elements. Technical data, history, processing, applications. Wiley, Weinheim, p 1243

    Google Scholar 

  • Evanko FR, Dzombak DA (1997) Remediation of metals-contaminated soils and groundwater. Technology evaluation report prepared for Ground Water Remediation Technologies Analysis Center, TE-97-01, Pittsburgh

  • Fernandes PG, Carreira PM, Bahir M (2010) Mass balance simulation and principal components analysis applied to groundwater resources: Essaouira basin (Morocco). Environ Earth Sci 59:1475–1484

    Article  Google Scholar 

  • Fitzpatrick ML, Long DT, Pijanowski BC (2007) Exploring the effects of urban and agricultural land use on surface water chemistry, across a regional watershed, using multivariate statistics. Appl Geochem 22:1825–1840

    Article  Google Scholar 

  • Foster DR, Motzkin G, Slater B (1998) Land-use history as long-term broad-scale disturbance: regional forest dynamics in central New England. Ecosystems 1:96–119

    Article  Google Scholar 

  • Garbarino RJ, Hayes H, Roth D, Antweider R, Brinton TI, Taylor H (1995) Contaminants in the Mississippi river, US geological survey circular, 1133, Virginia USA (www.pubs.usgs.gov/circ/circ1133/)

  • Gibbes B, Robinson C, Carey H, Li L, Lockington D (2008) Tidally driven pore water exchange in offshore intertidal sandbanks. Part I: field measurements. Estuar Coast Shelf Sci 79:121–132

    Article  Google Scholar 

  • Govil PK, Sorlie JE, Murthy NN, Sujatha D, Reddy GLN, Rudolph-Lund K, Krishna AK, Rama Mohan K (2008) Soil contamination of heavy metals in the Katedan industrial development area, Hyderabad, India. Environ Monit Assess 140:313–323. doi:10.1007/s10661-007-9869-x

    Article  Google Scholar 

  • Guo H, Zhang B, Li Y, Berner Z, Tang X, Norra S, Stüben D (2011) Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin Inner Mongolia. Environ Poll 159(4):876–883

    Article  Google Scholar 

  • Halim MA, Majumder RK, Nessa SA, Hiroshiro Y, Uddin MJ, Shimada J, Jinno K (2009) Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. J Hazard Mater 164:1335–1345

    Article  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298(5598):1602–1606

    Article  Google Scholar 

  • Hasan MA, Bhattacharya P, Sracek O, Ahmed KM, Bromssen MV, Jacks G (2009) Geological controls on groundwater chemistry and arsenic mobilization: hydrogeochemical study along an E–W transect in the Meghna basin, Bangladesh. J Hydrol 378:105–118

    Article  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JA, Sengupta B (2011) Remediation technologies for heavy metal contaminated ground water. J Eniron Manage 92:2355–2388

    Google Scholar 

  • Helena B, Prardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34:807–816

    Article  Google Scholar 

  • Hem JD (1989) Study and interpretation of the chemical characteristics of natural water. USGS Water Suppl Pap 2254(3):263

    Google Scholar 

  • Höhn R, Isenbeck-Schröter M, Kent DB, Davis JA, Jakobsen R, Jann S, Niedan V, Scholz C, Stadler S, Tretner A (2006) Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations. J Contam Hydrol 88:36–54

    Article  Google Scholar 

  • Homoncik SC, MacDonald AM, Heal KV, Dochartaigh BE, Ngwenya BT (2010) Manganese concentrations in Scottish groundwater. Sci Total Environ 408(12):2467–2473

    Article  Google Scholar 

  • Isa NM, Aris AZ, Lim WY, Sulaiman WNAW, Praveena SM (2014) Evaluation of heavy metal contamination in groundwater samples from Kapas Island. Arab J Geosci 7:1087–1100. doi:10.1007/s12517-012-0818-9

    Article  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Kim TH, Chung SY, Park N, Hamm SY, Lee Seung Y, Kim BW (2012) Combined analyses of chemometrics and kriging for identifying groundwater contamination sources and origins at the Masan coastal area in Korea. Environ Earth Sci 67(5):1373–1388. doi:10.1007/s12665-012-1582-6

    Article  Google Scholar 

  • Korte NE, Fernando Q (1991) A review of arsenic (III) in groundwater. Crit Rev Environ Control 21:1–40

    Article  Google Scholar 

  • Kumar M, Ramanathan AL, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geol 50:1025–1039

    Article  Google Scholar 

  • Lowers HA, Breit GN, Foster AL, Whitney J, Yount J, Uddin MN, Muneem AA (2007) Arsenic incorporation into authigenic pyrite, Bengal Basin sediment Bangladesh. Geochim Cosmochim Acta 71:2699–2717

    Article  Google Scholar 

  • Marcovecchio JE, Botte SE, Freije RH (2007) Heavy metals, major metals trace elements. In: Nollet LM (ed) Handbook of water analysis, 2nd edn. CRC Press, London, pp 275–311

    Google Scholar 

  • McArthur JM, Ravencroft P, Safiullah S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117

    Article  Google Scholar 

  • McBride MB (1989) Reactions controlling heavy metal solubility in soils. Advances Soil Sci 10:1–56

    Google Scholar 

  • Menció A, Mas-Pla J (2008) Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. J Hydrol 352(3–4):355–366

    Article  Google Scholar 

  • Molina M, Aburto FN, Calderan RL, Cazanga M, Escudey M (2009) Trace element composition of selected fertilizers used in Chile: phosphorus fertilizers as a source of long-term soil contamination. Soil Sed Contam 18:497–511

    Article  Google Scholar 

  • Mondal NC, Singh VS, Puranik SC, Singh VP (2010) Trace element concentration in groundwater of Pesarlanka Island, Krishna Delta, India. Environ Monit Assess 163:215–227

    Article  Google Scholar 

  • Mrklas O, Bentley LR, Lunn SRD, Chu A (2006) Principal component analyses of groundwater chemistry data during enhanced bioremediation. Water Air Soil Pollut 169:395–411

    Article  Google Scholar 

  • Mukherjee A, Bhattacharyab P, Savagec K, Fosterd A, Bundschuh J (2008) Distribution of geogenic arsenic in hydrologic systems:controls and challenges. J Contam Hydrol 99(1–4):1–7

    Article  Google Scholar 

  • Mumford KG, MacGregor JF, Dickson SE, Frappa RH (2007) Multivariate analysis of ground water and soil data from a waste disposal site. Ground Water Monit Remediat 27(1):92–102

    Article  Google Scholar 

  • Nadiri AA, Asghari Moghaddam A, Sadeghi F, Aghaee H (2012) Investigation of arsenic anomalies in water resources of Sahand Dam. J Environ Stud 38(3):61–74

    Google Scholar 

  • Navratil T, Shanley JB, Skřivan P, Kram P, Miha ljevič M, Drahota P (2007) Manganese biogeochemistry in a central Czech Republic catchment. Water Air Soil Pollut 186:149–165

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) Users guide to PHREEQC: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical modelling. US Geol Surv Water Resour Invest Rep 99(4259):312

    Google Scholar 

  • Parkhurst DL, Christenson S, Breit GN (1996) Ground-water quality assessment of the Central Oklahoma aquifer, Oklahoma-geochemical and geohydrologic investigations. US Geological Survey Water-Supply Paper 2357-C, p 101

  • Pazand K, Fereidoni Sarvestani J (2012) Hydrogeochemical investigation in an arid region of Iran (Tabas, Central Iran). Environ Earth Sci 66:1641–1651

    Article  Google Scholar 

  • Peters SC (2008) Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes. J Contam Hydrol 99:8–21

    Article  Google Scholar 

  • Peters SC, Blum JD (2003) The source and transport of arsenic in a bedrock aquifer, New Hampshire USA. Appl Geochem 18(11):1773–1787

    Article  Google Scholar 

  • Pettine M, Dottone L, Campanella L, Millero FJ, Passino R (1998) The reduction of chromium(VI) by iron(II) in aqueous solutions. Geochim Cosmochim Acta 62:1509–1519

    Article  Google Scholar 

  • Polizzotto ML, Harvey CF, Sutton SR, Fendorf S (2005) Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proc Nat Acad Sci 102(52):18819–18823

    Article  Google Scholar 

  • Rai D, Zachara JM (1984) Chemical attenuation rates, coefficients, and constants in leachate migration: a critical review. Electric Power Res Inst, EA-3356, Palo Alto, Calif

  • Saumen B, Bodhaditya D, Iohborlang MU, Rashmi RD, Hiran K, Lakshya BS, Kusum B, Prasanta KR, Lokendra S (2011) Heavy Metal Contaminants of Underground Water in Indo Bangla Border Districts of Tripura, India. Int J ChemTech Res 3(1):516–522

    Google Scholar 

  • Sedlak DL, Chan PG (1997) Reduction of hexavalent chromium by ferrous iron. Geochim Cosmochim Acta 1:2185–2192

    Article  Google Scholar 

  • Sia Su GL (2007) Impact on drinking water sources in close proximity to the Payatas dumpsite, Philippines. J Pub health 15:51–55

    Article  Google Scholar 

  • Singh AK (2004). Arsenic contamination in groundwater of North Eastern India. In: Proceedings of national seminar on hydrology held at National Institute of Hydrology, Roorkee

  • Smedley PL, Zhang M, Zhang G, Luo Z (2001) Arsenic and other redox-sensitive elements in groundwater from the Huhhot Basin, Inner Mongolia. Water-Rock Interaction 1:581–584

    Google Scholar 

  • Soon Y, Wilson MJ, Moon HS, Bacon JR, Bain DC (1999) Chemical and mineralogical forms odf lead, zinc and cadmium in particle size fractions of some wastes, sediments and soils in Korea. Appl Geochem 14:621–633

    Article  Google Scholar 

  • Stamatis G, Alexakis D, Gamvroula D, Migiros G (2011) Groundwater quality assessment in Oropos-Kalamos basin, Attica, Greece. Environ Earth Sci 64:973–988. doi:10.1007/s12665-011-0914-2

    Article  Google Scholar 

  • Subba Rao N (2008) Factors controlling the salinity in groundwaters from a part of Guntur district, Andhra Pradesh, India. Environ Monit Assess 138:327–341

    Article  Google Scholar 

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenicin ground water of the United States: occurrence and geochemistry. Ground Water 38:589–604

    Article  Google Scholar 

  • World Health Organization (WHO) (2008) Guidelines for drinking water quality. Recommendations, 2nd edn. WHO Press, Geneva, p 306

  • Zhu J, Okumura H, Ohtake S, Nakamura S, Nakao S (2003) Arsenic trioxide induces apoptosis in leukemia/lymphoma cell lines via the CD95/CD95L system. Oncol Rep 3:705–709

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge University of Tabriz for financial assistance and the East Azarbaijan Province Water and Waste Water Company for analyzing heavy metals of the water samples. We would like to thank M. Ouruji for his help in major ions analyzing of the water samples and M. Najib for his kind help in the collection of data. The authors would also like to thank Mike Streetly of ESI Ltd for reading the manuscript and making helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Asghari Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar, R., Asghari Moghaddam, A. & Kazemian, N. Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers, Iran. Environ Earth Sci 74, 297–313 (2015). https://doi.org/10.1007/s12665-015-4123-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4123-2

Keywords

Navigation