Skip to main content

Advertisement

Log in

The mineral springs of the Scrajo spa (Sorrento peninsula, Italy): a case of “natural” seawater intrusion

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper deals with the mineral springs feeding the Scrajo spa in the Sorrento peninsula southeast of Naples, approximately 6 km from Castellammare di Stabia, another spa location. The Scrajo mineral water is sulphureous, salt-bromine-iodic and CO2-rich. The two hydromineral areas fall within the groundwater basin of Mt. Faito formed chiefly by limestones. Due to the high permeability of the limestones, there is considerable rainwater infiltration which recharges a basal fresh groundwater resting on denser seawater. This groundwater body feeds the mineral springs of the Scrajo spa, the springs of Castellammare di Stabia and some submarine springs. All the data gathered for the Scrajo springs led to propose the following mineralisation scheme: (1) The basal fresh groundwater of Mt. Faito (on underlying seawater) receives endogenous contributions of CO2 and H2S which cause a “natural” seawater intrusion within the fresh groundwater; (2) The upwelling of gases would appear to occur via the major faults which bound Sorrento peninsula to the NW; (3) During the year, the chemistry of the springs changes according to different degrees of seawater intrusion: the minimum occurs in June and the maximum in November. The close interaction between the sea and the Scrajo’s mineral waters (but also those of Castellammare di Stabia) highlights their particular vulnerability not only to over-extraction of groundwater but also to climate change. Finally, a hypothesis is presented to explain the connection between the mineral waters rich in CO2 and H2S and the concentration of karst phenomena observed in the Scrajo area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu M, Banks D, Nash H (1997) Mineral and thermal groundwater resources. Chapmann and Hall

  • Andre BJ, Rajaram H (2005) Dissolution of limestone fractures by cooling waters: early development of hypogene karst systems. Water Resour Res 41:W01015

    Google Scholar 

  • Baiocchi A, Di Paola A, Lotti F, Piscopo V, Spaziani F (2010) Seawater intrusion in carbonate aquifers: the case of the spring group of Castellammare di Stabia (Naples, Southern Italy). It J Eng Geol Environ 2:5–20

    Google Scholar 

  • Bonardi G, D’Argenio B, Perrone V (1988) Carta geologica dell’Appennino meridionale 1/250000. Mem Soc Geol It 41

  • Budetta P, Nicotera P, Santo A (1996) Controlli e monitoraggio di fenomeni gravitativi indotti da carsismo in versanti carbonatici dell’Appennino Campano. Conv. Intern. “La prevenzione delle catastrofi idrogeologiche: il contributo della ricerca scientifica”, 5–7 November 1996, Alba, Italia 383–396

  • Caiazzo C, Ascione A, Cinque A (2006) Late tertiary-quaternary tectonics of the southern apennines (Italy): new evidence from Tyrrhenian slope. Tectonophysics 421:23–51

    Article  Google Scholar 

  • Capotorti F, Tozzi M (1991) Tettonica trascorrente nella Penisola Sorrentina. Mem Soc Geol It 47:235–249

    Google Scholar 

  • Carucci V, Petitta M, Aravena R (2012) Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: a multi-isotope approach and geochemical modeling. Appl Geochem 27:266–280

    Article  Google Scholar 

  • Celico P, Corniello A (1979) Idrodinamica, potenzialità e possibilità di sfruttamento delle risorse idriche sotterranee dei M.ti Lattari (Campania). Mem e Note Ist Geol Appl Univ Napoli 5:1–24

    Google Scholar 

  • Charideh A, Rahman (2007) Environmental isotopic and hydrochemical study of water in the karst aquifer and submarine springs of the Syrian coast. Hydrogeol J 15:351–364

    Article  Google Scholar 

  • Cinque A, Romano P (2001) Evoluzione geomorfologica e caratterizzazione oro-idrografica della Regione. In: L’ambiente Geologico della Campania. CUEN, Napoli 59–90

  • Corniello A (1994) Lineamenti idrogeochimici dei principali massicci carbonatici della Campania. Mem Soc Geol It 51:333–342

    Google Scholar 

  • Corniello A, de Riso R (1986) Idrogeologia ed idrochimica delle sorgenti dell’Agro Telesino (Benevento). Geologia Applicata ed Idrogeologia, Bari 21:53–84

  • Corniello A, Ducci D, Guarino PM (1999) I rilievi carbonatici del Matese occidentale e la Piana di Venafro: idrogeologia ed idrogeochimica. Boll Soc Geol It 118:523–535

  • Cozzolino L, Pianese N, Santangelo N, Di Crescenzo G (2007) Sinkholes di origine carsica nell’area dei Monti Lattari. Atti del I Convegno Regionale di Speleologia “Campania Speleologica”, giugno 2007, Oliveto Citra (SA) 85–101

  • Cüneyt D (2006) Conceptual hydrodynamic model of the Pamukkale hydrothermal field, south-western Turkey, based on hydrochemical and isotopic data. Hydrogeol J 14:562–572

    Article  Google Scholar 

  • Custodio E (2010) Coastal aquifers of Europe: an overview. Hydrogeol J 18:269–280

    Article  Google Scholar 

  • Dragoni W, Sukhija BS (2008) Groundwater and climatic changes: a short review. In: Climatic Change and Groundwater—Geological Society, London, Special Publications 288:1–12

  • Dublyansky YV (1995) Speleogenetic history of the Hungarian hydrothermal karst. Environ Geol 25:24–35

    Article  Google Scholar 

  • Ducci D, Tranfaglia G (2007) The effect of climate change on the hydrogeological resources in Campania region (Italy). In: Climatic change and groundwater-geological society, London, Special Publications 288:25–38

  • Erőss A, Csoma ÉA, Mádl-Szőnyi J (2008) The effects of mixed hydrothermal and meteoric fluids on karst reservoir development, Buda Thermal Karst, Hungary. In: Sasowsky ID, Feazel CT, Mylorie JE, Palmer AN, Palmer MV (eds) Karst from recent to reservoirs, Karst Waters Institute, Special Publication 14, Leesburg, VA, 57–63

  • Fleury P, Bakalowicz M, de Marsily G (2007) Submarine springs and coastal karst aquifers: a review. J Hydrol 339:79–92

    Article  Google Scholar 

  • Gabrovsek F, Dreybrodt W (2000) Role of mixing corrosion in calcite-aggressive H2O–CO2–CaCO3 solutions in the early evolution of karst aquifers in limestone. Water Resour Res 36:1179–1188

    Article  Google Scholar 

  • Ghiara MR, Piscopo V, Castaldo C, Fusco C, Lamberti A, Ragone V (1996) Idrodinamica dell’acquifero carbonatico dei Monti Lattari (Campania) alla luce di nuovi dati strutturali, idrogeologici e idrogeochimici. Atti V Conv Naz Giov Ric in Geol Appl, Cagliari

  • Goldshschider N, Madl-Szonyi J, Eross A, Schill E (2010) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18(6):1303–1318

    Article  Google Scholar 

  • Grasby SE, Hutcheon I (2001) Controls on the distribution of thermal springs in the southern Canadian Cordillera. Can J Earth Sci 38:427–440

    Article  Google Scholar 

  • Gunn J, Bottrell SH, Lowe DJ, Worthington SRH (2006) Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK. Hydrogeol J 14:868–881

    Article  Google Scholar 

  • Hatipoglu Z, Motz LH, Bayari CS (2009) Characterization of the groundwater flow system in the hillside and coastal aquifers of the Mersin-Tarsus region (Turkey). Hydrogeol J 17:1761–1778

    Article  Google Scholar 

  • Herrera C, Custodio E (2008) Conceptual hydrogeological model of volcanic Eastern Island (Chile) after chemical and isotopic surveys. Hydrogeol J 16:1329–1348

    Article  Google Scholar 

  • Holman IP (2006) Climate change impacts on groundwater recharge: uncertainty, shortcomings and the way forward. Hydrogeol J 14(5):637–647

    Article  Google Scholar 

  • Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, DuChene HR (2000) Microbiology and geochemistry in a hydrogen sulphide-rich karst environment. Chem Geol 169:399–423

    Article  Google Scholar 

  • Klimchouk AB (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. Special Paper No. 1, National Cave and Karst Research Institute, Carlsbad, NM

  • Kue-Young K, Yoon-Suk P, Gee-Pyo K, Ki-Hwa P (2009) Dynamic freshwater-saline water interaction in the coastal zone of Jeju Island, South Korea. Hydrogeol J 17:617–629

    Article  Google Scholar 

  • Lambrakis N, Kallergis G (2005) Contribution to the study of Greek thermal springs: hydrogeological and hydrochemical characteristics and origin of thermal waters. Hydrogeol J 13:506–521

    Article  Google Scholar 

  • Levet S, Toutain JP, Munoz M, Berger G, Negrel P, Jendrzejewski N, Agrinier P, Sortino F (2002) Geochemistry of the Bagneres-de-Bigorre thermal waters from the North Pyrenean Zone (France). Geofluids 2(1):25–40

    Article  Google Scholar 

  • Li M, Li GM, Yang L, Dang XY, Zhao CH, Hou GC, Zhang MS (2007) Numerical modeling of geothermal groundwater flow in karst aquifer system in eastern Weibei, Shaanxi Province, China. Sci China Ser D Earth Sci 50:36–41

    Article  Google Scholar 

  • Magri F, Akar T, Gemici U, Pekdeger A (2012) Numerical investigations of fault-induced seawater circulation in the Seferihisar-Balçova geothermal system, western Turkey. Hydrogeol J 20:103–118

    Article  Google Scholar 

  • Maramathas A (2006) A new approach for the development and management of brackish karst springs. Hydrogeol J 14:1360–1366

    Article  Google Scholar 

  • Minissale A (2004) Origin, transport and discharge of CO2 in central Italy. Earth Sci Rev 66:89–141

    Article  Google Scholar 

  • Minissale A, Vaselli O, Tassi F, Magro G, Grechi GP (2002) Fluid mixing in carbonate aquifers near Rapolano (central Italy): chemical and isotopic constraints. Appl Geochem 17:1329–1342

    Article  Google Scholar 

  • Moustadraf J, Razack M, Sinan M (2008) Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modeling. Hydrogeol J 16:1411–1426

    Article  Google Scholar 

  • Muralt R, Vuataz FD, Schonborn G, Sommaruga A, Jenny J (1997) Integration of hydrochemical, geological and geophysical methods for the exploration of a new thermal water resource: case of Yverdon-les-Bains, foot of the Jura range. Eclogae Geol Helv 90:179–197

    Google Scholar 

  • Nota d’ Elogio E (1979) Le acque minerali e termali della provincia di Napoli. Mem e Note Ist Geol Appl 15:108

    Google Scholar 

  • Petrini R, Italiano F, Ponton M, Slejko FF, Aviani U, Zini L (2013) Geochemistry and isotope geochemistry of the Montefalcone thermal waters (Northern Italy): interference on the deep geothermal reservoir. Hydrogeol J 21:1275–1287

    Article  Google Scholar 

  • Piscopo V, Fusco C, Lamberti A (1995) Idrogeologia dei Monti Lattari (Campania). Quaderni di Geologia Applicata 2:359–366

    Google Scholar 

  • Piscopo V, Allocca V, Brusa G, Cesario M, Monetti V, Pianese L (2000) Il fronte sorgivo di Castellammare di Stabia (Napoli): variazioni del grado di mineralizzazione delle acque sotterranee quali conseguenza dell’eterogeneità di un acquifero carbonatico. Boll Soc Geologica Italiana 119:567–580

    Google Scholar 

  • Polemio M, Dragone W, Limoni PP (2009) Monitoring and methods to analyse the groundwater quality degradation risk in coastal karstic aquifers (Apulia, Southern Italy). Environ Geol 58:299–312

    Article  Google Scholar 

  • Rollison H (1993) Using geochemical data. Longman, London, UK

  • Russo L, De Dimone F, Veneziano A, Rastrelli L (2009) Caratterizzazione del chimismo delle acque dei Monti Lattari: risultati di una indagine decennale sull’acqua sulfureo-salso-bromo-iodica dello Scrajo Terme. J Water Wellness 1:27–34

    Google Scholar 

  • Sandford W, Langevin C, Polemio M, Povinec P (2007) A new focus on groundwater-seawater interactions. IAHS Publ 312:344

    Google Scholar 

  • Santo A, Ascione A, Del Prete S, Di Crescenzo G, Santangelo N (2011) Collapse sinkholes distribution in the carbonate massifs of the central and southern Apennines. Acta Carsiologica, 40/1, Postojna 95–112

    Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, Macdonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh PJ-F, Holman I, Treidel H (2013) Ground water and climate change. Nat Clim Changek 3(4):322–329. doi:10.1038/nclimate1744

    Article  Google Scholar 

  • Ufrecht (2006) Hydrogeologie des Stuttgarter Mineralwassersystems (Hydrogeology of the mineral water system of Stuttgart). Schrift Amters Umweltschutz 2006(3):1–151

    Google Scholar 

  • Underschultz JR, Otto CJ, Bartlett R (2005) Formation fluids in faulted aquifers: examples from the foothills of Western Canada and the North West Shelf of Australia. In: Boult P, Kaldi J (eds) Evaluating fault and cap rock seals. AAPG Hedberg Series No. 2, AAPG, Tulsa, OK, 247–260

Download references

Acknowledgments

The authors wish to thank the Editor and the Referee for their careful reading of the manuscript, their comments and remarks. Particular thanks go to Elisabetta Scala, owner of the Scrajo spa, whose great scientific sensitivity allowed the acquisition of data required for research development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Corniello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corniello, A., Trifuoggi, M. & Ruggieri, G. The mineral springs of the Scrajo spa (Sorrento peninsula, Italy): a case of “natural” seawater intrusion. Environ Earth Sci 72, 147–156 (2014). https://doi.org/10.1007/s12665-013-2942-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2942-6

Keywords

Navigation