Skip to main content

Advertisement

Log in

Allochthonous versus autochthonous naturally occurring organic matter in the Anllóns river bed sediments (Spain)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Despite of the importance of the aquatic ecosystems as organic matter pools within the global carbon cycle, specific studies in river sediments are still insufficient. This study was carried out in an Atlantic basin where nine sites were selected in the lowest middle stretch of the River. The analyses include total organic carbon, C/N ratios, humus composition (humic, fulvic and humin), A2/A4 and A4/A6 ratios, biologically active organic matter (BAOM), water soluble organic matter (WSOC) and coloured water soluble organic carbon (CWSOC). The results suggested a predominance of allochthonous sources to the organic matter, highly influenced by the land uses together with the river hydrodynamics, namely urban and forest at sites 1, 2 and 9, and agricultural at sites 7 and 8. The 38% of the total organic matter was humic and fulvic acids. The biologically active organic matter, which may act as a proxy of microbial activity, showed a mean value of 0.9% of the total organic matter, showing the lowest values at sites with the highest organic matter total, soluble or coloured. This coloured organic matter represented an average of 3.60% of the total organic matter, and showed the highest visible light absorption at those sites more affected by human activities, close to centres of population (1, 2 and 9). This coloured fraction showed also a high degree of photostability. C/N ratios were less effective to discriminate between allochthonous or autochthonous sources, whereas A4/A6 ratios were effective to estimate variations of autochthonous sources, as it measures the variations of phytopigments of the river bed sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anawar HM, Yoshioka T, Konohira E, Akai J, Freitas MC, Tareq SM (2010) Sources of organic carbon and depositional environment in the Bengal delta plain sediments during the Holocene period. Limnology 11(2):133–142

    Article  Google Scholar 

  • Badin A-L, Faure P, Bedell J-P, Delolme C (2008) Distribution of organic pollutants and natural organic matter in urban storm water sediments as a function of grain size. Sci Total Environ 403(1–3):178–187

    Google Scholar 

  • Belzile N, Joly HA, Li H (1997) Characterization of humic substances extracted from Canadian lake sediments. Can J Chem 75(1):14–27

    Article  Google Scholar 

  • Bolin B, Sukumar R (2000) Global perspective. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) Land use, land-use change and forestry, a special report of the IPCC. Cambridge University Press, Cambridge, pp 23–51

  • Chen Z, Li Y, Pan J (2004) Distributions of colored dissolved organic matter and dissolved organic carbon in the Pearl River Estuary, China. Cont Shelf Res 24:1845–1856

    Article  Google Scholar 

  • Chen Z, Hu C, Conmy RN, Muller-Karger F, Swarzenski P (2007) Colored dissolved organic matter in Tampa Bay, Florida. Mar Chem 104(1–2):98–109

    Article  Google Scholar 

  • Cuny P, Marty J-C, Chiavérini J, Vescovali I, Raphel D, Rontani J-F (2002) One-year seasonal survey of the chlorophyll photodegradation process in the northwestern Mediterranean Sea. Deep Sea Res II 49(11):1987–2005

    Article  Google Scholar 

  • Dali-youcef N, Ouddane B, Derriche Z (2006) Adsorption of zinc on natural sediment of Tafna River (Algeria). J Haz Mater 137(3):1263–1270

    Article  Google Scholar 

  • De Lima CAI, Guapyassú AMS, Pedrosa S (2009) Distribution of colored dissolved organic matter and dissolved organic carbon in a watershed (Río Imbe – Lagoa de Cima, RJ, Brazil). HydroEco 2009 Proceedings, Viena, pp 67–70

  • De Paolis F, Kukkonen J (1997) Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material. Chemosphere 34(8):1693–1704

    Article  Google Scholar 

  • Devesa R, Moldes AB, Díaz-Fierros F, Barral MT (2007) Extraction study of algal pigments in river bed sediments by applying factorial designs. Talanta 72:1546–1551

    Article  Google Scholar 

  • Devesa-Rey R, Paradelo R, Díaz-Fierros F, Barral MT (2008a) Fractionation and bioavailability of arsenic in the bed sediments of the Anllóns river (NW Spain). Water Air Soil Poll 195:189–199

    Article  Google Scholar 

  • Devesa-Rey R, Moldes AB, Díaz-Fierros F, Barral MT (2008b) Toxicity of Anllóns river sediments extracts using Microtox and the Zucconi phytotoxicity test. Bull Environ Contam Toxicol 80:225–230

    Article  Google Scholar 

  • Devesa-Rey R, Moldes AB, Díaz-Fierros F, Barral MT (2009a) Total phosphorus distribution and bioavailability in the bed sediments of an Atlantic basin (Galicia, NW Spain): spatial distribution and vertical profiles. Water Air Soil Poll 200:341–352

    Article  Google Scholar 

  • Devesa-Rey R, Moldes AB, Díaz-Fierros F, Barral MT (2009b) Study of phytopigments in river bed sediments: effects of the organic matter, nutrients and metal composition. Environ Monit Assess 153(1–4):147–159

    Article  Google Scholar 

  • Devesa-Rey R, Díaz-Fierros F, Barral MT (2010) Trace metals in river bed sediments: an assessment of their partitioning and bioavailability by using multivariate exploratory analysis. J Environ Manage (in press)

  • Devesa-Rey R, Paradelo R, Barral MT (2011) Computation of bed sediment transport in the Anllóns River (NW Spain): implications for texture, energy flow and deposition conditions. Fresenius Environ Bull (in press)

  • Duchafour P, Jacquin F (1966) Nouvelles recherches sur l’extraction et le fractionnement des composes humiques. Bull l’Ecole Sup Agr Nancy 8:24

    Google Scholar 

  • Elkins KM, Nelson DJ (2001) Fluorescence and FT-IR spectroscopic studies of Suwannee river fulvic acid complexation with aluminum, terbium and calcium. J Inorg Biochem 87:81–96

    Article  Google Scholar 

  • El-Sayed MA, Naga WMA, Beltagy AI, Halim Y (1996) Sedimentary humic substances isolated from a coastal lagoon of the Nile Delta: physical and chemical characteristics. Estuar Coast Shelf S 43(2):205–215

    Article  Google Scholar 

  • Fabiano M, Danovaro R (1994) Composition of organic matter in sediments facing a river estuary (Tyrrhenian Sea): relationships with bacteria and microphytobenthic biomass. Hydrobiologia 277:71–84

    Article  Google Scholar 

  • Fabiano M, Danovaro R, Fraschetti S (1995) A three-year series of elemental and biochemical composition of organic matter in subtidal sandy sediments of the Ligurian Sea (northwestern Mediterranean). Cont Shelf Res 15:1453–1469

    Article  Google Scholar 

  • Fischer H, Meyer A, Fischer K, Kuzyakov Y (2007) Carbohydrate and amino acid composition of dissolved organic matter leached from soil. Soil Biol Biochem 39(11):2926–2935

    Article  Google Scholar 

  • Fooken U, Liebezeit G (2000) Distinction of marine and terrestrial origin of humic acids in North Sea surface sediments by absorption spectroscopy. Mar Geol 164:173–181

    Article  Google Scholar 

  • Foster GD, Cui V (2008) PAHs and PCBs deposited in surficial sediments along a rural to urban transect in a Mid-Atlantic coastal river basin (USA). J Environ Sci Heal A 43(12):1333–1345

    Article  Google Scholar 

  • Gao L, Fan D, Sun C, Li D, Cai J (2010) Optical characterization of CDOM in a marsh-influenced environment in the Changjiang (Yangtze River) Estuary. Environ Earth Sci (in press)

  • Giani M, Berto D, Rampazzo F, Savelli F, Alvisi F, Giordano P, Ravaioli M, Frascari F (2009) Origin of sedimentary organic matter in the north-western Adriatic Sea. Estuar Coast Shelf S 84(4):573–583

    Article  Google Scholar 

  • Guerard JJ, Miller PL, Trouts TD, Chin Y-P (2009) The role of fulvic acid composition in the photosensitized degradation of aquatic contaminants. Aquat Sci 71(2):160–169

    Article  Google Scholar 

  • Guitián F, Carballas T (eds) (1976) Técnicas de Análisis de Suelos. Ed. Pico Sacro, Santiago de Compostela, Spain 288

    Google Scholar 

  • Gupta L (2001) Nature of sedimentary organic matter in the lower reaches of the Godavari River basin, India. J Asian Earth Sci 19:727–736

    Article  Google Scholar 

  • Hays MD, Ryan DK, Pennell S, Milenkovic LV (1996) Data treatments for relating metal-ion binding to fulvic acid as measured by fluorescence spectroscopy, Chap 8. In: Humic and fulvic acids. ACS Symposium Series 651

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27(5–6):195–212

    Article  Google Scholar 

  • Hochman HT, Muller-Karger FE, Walsh JJ (1995) Interpretation of the coastal zone color scanner signature of the Orinoco River plume. J Geophys Res 99:7443–7455

    Article  Google Scholar 

  • Hulatt CJ, Thomas DN, Bowers DG, Norman L, Zhang C (2009) Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuar Coast Shelf S 84(1):147–153

    Article  Google Scholar 

  • Iglesias ML, Barral MT, Díaz-Fierros F (2009) Aplicación del método de la huella para la determinación del origen de sedimentos en suspensión. In: Sánchez Díaz y Asins Velis (eds) Proceedings of the IV Simposio Nacional de Control de la Degradación de los Suelos y Cambio Global

  • Ishiwatari R, Yamamoto S, Uemura H (2005) Lipid and lignin/cutis compounds in Lake Baikal sediments over the last 37 kyr: implications for glacial-interglacial palaeoenvironmental change. Org Geochem 36:327–347

    Article  Google Scholar 

  • Ito T, Iwamoto H, Kamiya K, Fukushima T, Kumon F (2010) Use of flood chronology for detailed environmental analysis: a case study of Lake Kizaki in the northern Japanese Alps, central Japan. Environ Earth Sci 60(8):1607–1618

    Article  Google Scholar 

  • Kowalczuk P, Ston-Egiert J, Cooper WJ, Whitehead RF, Durako MJ (2005) Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy. Mar Chem 96:273–292

    Article  Google Scholar 

  • Kalisz B, Lachacz A, Glazewski R (2010) Transformation of some organic matter components in organic soils exposed to drainage. Turk J Agric For 34(3):245–256

    Google Scholar 

  • Kumke T, Schoonderwaldt A, Kienel U (2005) Spatial variability of sedimentological properties in a large Siberian lake. Aquat Sci 67(1):86–96

    Article  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. J Plant Nutr Soil Sc 163:421–431

    Article  Google Scholar 

  • Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using d13C and C/N ratios in organic material. Earth Sci Rev 75:29–57

    Article  Google Scholar 

  • Lee JHW, Arega E (1999) Eutrophication dynamics of Tolo Harbour, Hong Kong. Mar Pollut Bull 39(1–12):187–192

    Article  Google Scholar 

  • Liu JT, Hung J-J, Huang Y-W (2009) Partition of suspended and riverbed sediments related to the salt-wedge in the lower reaches of a small mountainous river. Mar Geol 264(3–4):152–164

    Article  Google Scholar 

  • MacCarthy P, Rice JA (1985) Spectroscopic methods (other than NMR) for determining functionality in humic substances. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil sediment and water, chap 21. Wiley, New York, pp 527–559

    Google Scholar 

  • Mead R, Xu Y, Chong J, Jaffé R (2004) Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org Geochem 36:363–370

    Article  Google Scholar 

  • Mietta F, Chassagne C, Manning AJ, Winterwerp JC (2009) Influence of shear rate, organic matter content, pH and salinity on mud flocculation. Ocean Dyn 59(5):751–763

    Article  Google Scholar 

  • Miltner A, Emeis K-C (2001) Terrestrial organic matter in surface sediments of the Baltic Sea, NW Europe, as determined by CuO oxidation. Geochim Cosmochim Acta 65:1285–1299

    Article  Google Scholar 

  • Mirsky SB, Lanyon LE, Needelman BA (2008) Evaluating soil management using particulate and chemically labile soil organic matter fractions. Soil Sci Soc Am J 72(1):180–185

    Article  Google Scholar 

  • Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr 42(6):1307–1316

    Article  Google Scholar 

  • Moreda-Piñeiro A, Seco-Gesto EM, Bermejo-Barrera A, Bermejo-Barrera P (2006) Characterization of surface marine sediments from Ría de Arousa estuary according to extractable humic matter content. Chemosphere 64:866–873

    Article  Google Scholar 

  • Müller PJ (1977) C/N ratios in Pacific deep sea sediment: effect of inorganic ammonium and organic nitrogen compound sorbed by clays. Geochim Cosmochim Acta 41(6):765–776

    Article  Google Scholar 

  • Murase J, Sakamoto M (2000) Horizontal distribution of carbon and nitrogen and their isotopic compositions in the surface sediment of Lake Biwa. Limnology 1(3):177–184

    Article  Google Scholar 

  • Obernosterer I, Benner R (2004) Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol Oceanogr 49(1):117–124

    Article  Google Scholar 

  • Ortega-Retuerta E, Reche I, Pulido-Villena E, Agustí S, Duarte CM (2010) Distribution and photoreactivity of chromophoric dissolved organic matter in the Antarctic Peninsula (Southern Ocean). Mar Chem 118(3–4):129–139

    Article  Google Scholar 

  • Penalta-Rodriguez M, López-Rodriguez MC, Devesa-Rey R, Iglesias ML, Paradelo R, Díaz-Fierros F, Barral MT (2008) Composición algal del biofilm en sedimentos de fondo del río Anllóns. In: Prenda J (ed) Actas del XIV Congreso de la Asociación Ibérica de Limnología. Huelva, Spain

  • Peperzak L, Colijn F, Koeman R, Gieskes WWC, Joordens JCA (2003) Phytoplankton sinking rates in the Rhine region of freshwater influence. J Plankton Res 25(4):365–383

    Article  Google Scholar 

  • Polymenakou PN, Fragkioudaki G, Tselepides A (2007) Bacterial and organic matter distribution in the sediments of the Thracian Sea (NE Aegean Sea). Cont Shelf Res 27(17):2187–2197

    Article  Google Scholar 

  • Porcal P, Koprivnjak JF, Molot LA, Dillon PJ (2009) Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change. Environ Sci Pollut R Int 16(6):714–726

    Article  Google Scholar 

  • Ramos MC, Quinton JN, Tyrrel SF (2006) Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms. J Environ Manage 78(1):97–101

    Article  Google Scholar 

  • Reyes-Solis IE, Solis C, Isaac-Olive K, Garcia NE, Andrade E (2009) Fractionation analysis of trace metals in humic substances of soils irrigated with wastewater in Central Mexico by particle induced X-ray emission. Microchem J 91(1):129–132

    Article  Google Scholar 

  • Rochelle-Newall EJ, Fish TR (2002) Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Mar Chem 77:23–34

    Article  Google Scholar 

  • Stevenson FJ (1985) Geochemistry of soil humic substances. In: Aiken GR, McKnight DM, Wershaw RL (eds) Humic Substances in Soil, Sediment, and Water, Wiley, New York pp 13–52

  • Sulzberger B, Durisch-Kaiser E (2009) Chemical characterization of dissolved organic matter (DOM): a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat Sci 71(2):104–126

    Article  Google Scholar 

  • Sun WL, Ni JR, Liu TT (2006) Effect of sediment humic substances on sorption of selected endocrine disruptors. Water Air Soil Poll 6(5–6):583–591

    Google Scholar 

  • Tesi T, Miserocchi S, Langone L, Boni L, Guerrini F (2006) Sources, fate and distribution of organic matter on the western Adriatic Continental shelf, Italy. Water Air Soil Poll 6(5–6):593–603

    Google Scholar 

  • Tranvik LJ, Bertilsson S (2001) Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol Lett 4(5):458–463

    Article  Google Scholar 

  • Vodacek A, Blough NV, DeGrandpre MD, Peltzer ET, Nelson RK (1997) Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation. Limnol Oceanogr 42(4):674–686

    Article  Google Scholar 

  • Weill RR, Islanm KR, Stine MA, Gruver JB, Samson-Liebig SE (2003) Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am J Altern Agr 18(1):3–17

    Article  Google Scholar 

  • Wiltshire K (2000) Algae and associated pigments of intertidal sediments, new observations and methods. Limnologica 30:205–214

    Article  Google Scholar 

  • Wu Y, Zhang S, Guo X, Huang H (2008) Adsorption of chromium (III) on lignin. Bioresour Technol 99(16):7709–7715

    Article  Google Scholar 

Download references

Acknowledgments

The present study has been financed by the Spanish Ministry of Education and Science (MEC, CGL2007-62928) and by the Regional Government of Xunta de Galicia (Ángeles Alvariño program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Devesa-Rey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devesa-Rey, R., Barral, M.T. Allochthonous versus autochthonous naturally occurring organic matter in the Anllóns river bed sediments (Spain). Environ Earth Sci 66, 773–782 (2012). https://doi.org/10.1007/s12665-011-1286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1286-3

Keywords

Navigation