Skip to main content

Advertisement

Log in

Nutritional screening and assessment in inflammatory bowel disease

  • Review Article
  • Published:
Indian Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is associated with increased risk of malnutrition and sarcopenia. Both malnutrition and sarcopenia negatively impact the clinical course, quality of life, response to therapy, and surgical outcomes in patients with IBD. This review article highlights the importance of nutritional assessment in patients with IBD and also discusses the different nutritional screening and assessment tools, and measures to detect sarcopenia in relation to IBD. Identification of malnutrition and sarcopenia will allow prioritization of the corrective actions, such as nutritional rehabilitation, to improve clinical outcomes. An approach to the evaluation of nutritional status in patients with IBD is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Beaudart C, Sanchez-Rodriguez D, Locquet M, Reginster J-Y, Lengelé L, Bruyère O. Malnutrition as a strong predictor of the onset of sarcopenia. Nutrients. 2019;11:2883.

    Article  PubMed Central  Google Scholar 

  2. Vandewoude MFJ, Alish CJ, Sauer AC, Hegazi RA. Malnutrition-sarcopenia syndrome: is this the future of nutrition screening and assessment for older adults? J Aging Res. 2012;2012:651570.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fact sheets - Malnutrition. https://www.who.int/news-room/fact-sheets/detail/malnutrition. Accessed November 13, 2020.

  4. Cederholm T, Barazzoni R, Austin P, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017;36:49–64.

    Article  CAS  PubMed  Google Scholar 

  5. Muscaritoli M, Anker SD, Argilés J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics.” Clin Nutr. 2010;29:154–9.

    Article  CAS  PubMed  Google Scholar 

  6. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12:249–56.

    Article  PubMed  Google Scholar 

  8. Gerasimidis K, McGrogan P, Edwards CA. The aetiology and impact of malnutrition in paediatric inflammatory bowel disease. J Hum Nutr Diet. 2011;24:313–26.

    Article  CAS  PubMed  Google Scholar 

  9. Cao Q, Huang Y-H, Jiang M, Dai C. The prevalence and risk factors of psychological disorders, malnutrition and quality of life in IBD patients. Scand J Gastroenterol. 2019;54:1458–66.

    Article  PubMed  Google Scholar 

  10. Casanova MJ, Chaparro M, Molina B, et al. Prevalence of malnutrition and nutritional characteristics of patients with inflammatory bowel disease. J Crohns Colitis. 2017;11:1430–9.

    Article  PubMed  Google Scholar 

  11. Ünal NG, Oruç N, Tomey O, Ömer Özütemiz A. Malnutrition and sarcopenia are prevalent among inflammatory bowel disease patients with clinical remission. Eur J Gastroenterol Hepatol. 2021;33:1367–75.

    Article  PubMed  CAS  Google Scholar 

  12. Balestrieri P, Ribolsi M, Guarino MPL, Emerenziani S, Altomare A, Cicala M. Nutritional aspects in inflammatory bowel diseases. Nutrients. 2020;12:372.

    Article  CAS  PubMed Central  Google Scholar 

  13. Donnellan CF, Yann LH, Lal S. Nutritional management of Crohn’s disease. Ther Adv Gastroenterol. 2013;6:231–42.

    Article  CAS  Google Scholar 

  14. Nguyen GC, Munsell M, Harris ML. Nationwide prevalence and prognostic significance of clinically diagnosable protein-calorie malnutrition in hospitalized inflammatory bowel disease patients. Inflamm Bowel Dis. 2008;14:1105–11.

    Article  PubMed  Google Scholar 

  15. Ghoshal UC, Shukla A. Malnutrition in inflammatory bowel disease patients in northern India: frequency and factors influencing its development. Trop Gastroenterol. 2008;29:95–7.

    PubMed  Google Scholar 

  16. Benjamin J, Makharia GK, Kalaivani M, Joshi YK. Nutritional status of patients with Crohn’s disease. Indian J Gastroenterol. 2008;27:195–200.

    PubMed  Google Scholar 

  17. Weisshof R, Chermesh I. Micronutrient deficiencies in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. 2015;18:576–81.

    Article  CAS  PubMed  Google Scholar 

  18. Fritz J, Walia C, Elkadri A, et al. A systematic review of micronutrient deficiencies in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2019;25:445–59.

    Article  PubMed  Google Scholar 

  19. Fabisiak N, Fabisiak A, Watala C, Fichna J. Fat-soluble vitamin deficiencies and inflammatory bowel disease: systematic review and meta-analysis. J Clin Gastroenterol. 2017;51:878–89.

    Article  CAS  PubMed  Google Scholar 

  20. Khan SS, Patil SS. Bone density in pediatric Crohn’s disease: A cross-sectional observation from South India. Indian J Gastroenterol. 2017;36:184–8.

    Article  PubMed  Google Scholar 

  21. Bundela RPS, Ashdhir P, Narayan KS, Jain M, Pokharna RK, Nijhawan S. Prevalence and risk factors for low bone mineral density in ulcerative colitis. Indian J Gastroenterol. 2017;36:193–6.

    Article  PubMed  Google Scholar 

  22. Law AD, Dutta U, Kochhar R, et al. Vitamin D deficiency in adult patients with ulcerative colitis: Prevalence and relationship with disease severity, extent, and duration. Indian J Gastroenterol. 2019;38:6–14.

    Article  PubMed  Google Scholar 

  23. Ciocîrlan M, Ciocîrlan M, Iacob R, et al. Malnutrition prevalence in newly diagnosed patients with inflammatory bowel disease - data from the National Romanian Database. J Gastrointest Liver Dis. 2019;28:163–8.

    Article  Google Scholar 

  24. Lee CH, Yoon H, Oh DJ, et al. The prevalence of sarcopenia and its effect on prognosis in patients with Crohn’s disease. Intest Res. 2020;18:79–84.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pizzoferrato M, de Sire R, Ingravalle F, et al. Characterization of sarcopenia in an IBD population attending an Italian Gastroenterology Tertiary Center. Nutrients. 2019;11:2281.

    Article  CAS  PubMed Central  Google Scholar 

  26. Ryan E, McNicholas D, Creavin B, Kelly ME, Walsh T, Beddy D. Sarcopenia and inflammatory bowel disease: a systematic review. Inflamm Bowel Dis. 2019;25:67–73.

    Article  PubMed  Google Scholar 

  27. Valentini L, Schaper L, Buning C, et al. Malnutrition and impaired muscle strength in patients with Crohn’s disease and ulcerative colitis in remission. Nutrition. 2008;24:694–702.

    Article  PubMed  Google Scholar 

  28. Bian D, Shi Y, Jiang Y, Zhong J, Sun J, Gu Y. Combined Patient-Generated Subjective Global Assessment and body composition facilitates nutritional support in inflammatory bowel disease: an ambulatory study in Shanghai. Asia Pac J Clin Nutr. 2018;27:1230–8.

    PubMed  Google Scholar 

  29. Pironi L. Definitions of intestinal failure and the short bowel syndrome. Best Pract Res Clin Gastroenterol. 2016;30:173–85.

    Article  PubMed  Google Scholar 

  30. Shah A, Morrison M, Burger D, et al. Systematic review with meta-analysis: the prevalence of small intestinal bacterial overgrowth in inflammatory bowel disease. Aliment Pharmacol Ther. 2019;49:624–35.

    Article  PubMed  Google Scholar 

  31. Mawe GM. Colitis-induced neuroplasticity disrupts motility in the inflamed and post-inflamed colon. J Clin Invest. 2015;125:949–55.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vrees MD, Pricolo VE, Potenti FM, Cao W. Abnormal motility in patients with ulcerative colitis: the role of inflammatory cytokines. Arch Surg. 2002;137:439–45.

    Article  CAS  PubMed  Google Scholar 

  33. Rana SV, Sharma S, Malik A, et al. Small intestinal bacterial overgrowth and orocecal transit time in patients of inflammatory bowel disease. Dig Dis Sci. 2013;58:2594–8.

    Article  CAS  PubMed  Google Scholar 

  34. Castiglione F, Del Vecchio BG, Rispo A, et al. Orocecal transit time and bacterial overgrowth in patients with Crohn’s disease. J Clin Gastroenterol. 2000;31:63–6.

    Article  CAS  PubMed  Google Scholar 

  35. DiBaise JK. Nutritional consequences of small intestinal bacterial overgrowth. Pract Gastroenterol. 2008;32:15–28.

    Google Scholar 

  36. Vítek L. Bile acid malabsorption in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:476–83.

    Article  PubMed  Google Scholar 

  37. Ungaro R, Babyatsky MW, Zhu H, Freed JS. Protein-losing enteropathy in ulcerative colitis. Case Rep Gastroenterol. 2012;6:177–82.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Craven MD, Washabau RJ. Comparative pathophysiology and management of protein-losing enteropathy. J Vet Intern Med. 2019;33:383–402.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kawaguchi Y, Mine T, Kawana I, Umemura S. Protein-losing enteropathy, deep venous thrombosis and pulmonary embolism in a patient with generalized inflammatory polyposis in remission stage of ulcerative colitis. Clin J Gastroenterol. 2009;2:156–60.

    Article  PubMed  Google Scholar 

  40. Sharma K, Mogensen KM, Robinson MK. Pathophysiology of critical illness and role of nutrition. Nutr Clin Pract. 2019;34:12–22.

    Article  PubMed  Google Scholar 

  41. Langhans W, Hrupka BJ. Cytokines and Appetite. In: Kronfol Z, ed. Cytokines and Mental Health. Neurobiological Foundation of Aberrant Behaviors. Springer US; 2003:167–209.

  42. Tomar SK, Kedia S, Upadhyay AD, et al. Impact of dietary beliefs and practices on patients with inflammatory bowel disease: an observational study from India. JGH Open. 2017;1:15–21.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Larussa T, Suraci E, Marasco R, Imeneo M, Abenavoli L, Luzza F. Self-prescribed dietary restrictions are common in inflammatory bowel disease patients and are associated with low bone mineralization. Medicina (Kaunas). 2019;55:507.

    Article  Google Scholar 

  44. Halsted CH, Gandhi G, Tamura T. Sulfasalazine inhibits the absorption of folates in ulcerative colitis. N Engl J Med. 1981;305:1513–7.

    Article  CAS  PubMed  Google Scholar 

  45. Rehman Q, Lane NE. Effect of glucocorticoids on bone density. Med Pediatr Oncol. 2003;41:212–6.

    Article  PubMed  Google Scholar 

  46. Yunice AA, Czerwinski AW, Lindeman RD. Influence of synthetic corticosteroids on plasma zinc and copper levels in humans. Am J Med Sci. 1981;282:68–74.

    Article  CAS  PubMed  Google Scholar 

  47. Lukert BP, Adams JS. Calcium and phosphorus homeostasis in man: effect of corticosteroids. Arch Intern Med. 1976;136:1249–53.

    Article  CAS  PubMed  Google Scholar 

  48. Soares PMG, Lopes LO, Mota JMSC, Belarmino-Filho JN, Ribeiro RA, de Souza MHLP. Methotrexate-induced intestinal mucositis delays gastric emptying and gastrointestinal transit of liquids in awake rats. Arq Gastroenterol. 2011;48:80–5.

    Article  PubMed  Google Scholar 

  49. Carneiro-Filho BA, Lima IPF, Araujo DH, et al. Intestinal barrier function and secretion in methotrexate-induced rat intestinal mucositis. Dig Dis Sci. 2004;49:65–72.

    Article  CAS  PubMed  Google Scholar 

  50. Fujita S, Volpi E. Nutrition and sarcopenia of ageing. Nutr Res Rev. 2004;17:69–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rocha R, Santana GO, Almeida N, Lyra AC. Analysis of fat and muscle mass in patients with inflammatory bowel disease during remission and active phase. Br J Nutr. 2009;101:676–9.

    Article  CAS  PubMed  Google Scholar 

  52. Ananthakrishnan AN, McGinley EL. Infection-related hospitalizations are associated with increased mortality in patients with inflammatory bowel diseases. J Crohns Colitis. 2013;7:107–12.

    Article  PubMed  Google Scholar 

  53. Rocha R, Sousa UH, Reis TLM, Santana GO. Nutritional status as a predictor of hospitalization in inflammatory bowel disease: a review. World J Gastrointest Pharmacol Ther. 2019;10:50–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fasanmade AA, Adedokun OJ, Olson A, Strauss R, Davis HM. Serum albumin concentration: a predictive factor of infliximab pharmacokinetics and clinical response in patients with ulcerative colitis. Int J Clin Pharmacol Ther. 2010;48:297–308.

    Article  CAS  PubMed  Google Scholar 

  55. Rosario M, Dirks NL, Gastonguay MR, et al. Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment Pharmacol Ther. 2015;42:188–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sumi R, Nakajima K, Iijima H, et al. Influence of nutritional status on the therapeutic effect of infliximab in patients with Crohn’s disease. Surg Today. 2016;46:922–9.

    Article  CAS  PubMed  Google Scholar 

  57. Erős A, Soós A, Hegyi P, et al. Sarcopenia as an independent predictor of the surgical outcomes of patients with inflammatory bowel disease: a meta-analysis. Surg Today. 2020;50:1138–50.

    Article  PubMed  Google Scholar 

  58. Carvalho D, Viana C, Marques I, Costa C, Martins S. Sarcopenia is associated with postoperative outcome in patients with crohn’s disease undergoing bowel resection. Gastrointest Disord. 2019;1:201–9.

    Article  Google Scholar 

  59. Peyrin-Biroulet L, Germain A, Patel AS, Lindsay JO. Systematic review: outcomes and post-operative complications following colectomy for ulcerative colitis. Aliment Pharmacol Ther. 2016;44:807–16.

    Article  CAS  PubMed  Google Scholar 

  60. O’Brien S, Kavanagh RG, Carey BW, Maher MM, O’Connor OJ, Andrews EJ. The impact of sarcopenia and myosteatosis on postoperative outcomes in patients with inflammatory bowel disease. Eur Radiol Exp. 2018;2:37.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang T, Cao L, Cao T, et al. Prevalence of sarcopenia and its impact on postoperative outcome in patients with crohn’s disease undergoing bowel resection. J Parenter Enter Nutr. 2017;41:592–600.

    Article  Google Scholar 

  62. Cushing KC, Kordbacheh H, Gee MS, Kambadakone A, Ananthakrishnan AN. Sarcopenia is a novel predictor of the need for rescue therapy in hospitalized ulcerative colitis patients. J Crohns Colitis. 2018;12:1036–41.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis. 2011;17:1314–21.

    Article  PubMed  Google Scholar 

  64. Kondrup J, Rasmussen HH, Hamberg O, Stanga Z, Ad Hoc ESPEN Working Group. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr. 2003;22:321–36.

  65. Weekes CE, Elia M, Emery PW. The development, validation and reliability of a nutrition screening tool based on the recommendations of the British Association for Parenteral and Enteral Nutrition (BAPEN). Clin Nutr. 2004;23:1104–12.

    Article  PubMed  Google Scholar 

  66. Rubenstein LZ, Harker JO, Salvà A, Guigoz Y, Vellas B. Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci. 2001;56:M366-372.

    Article  CAS  PubMed  Google Scholar 

  67. Buzby GP, Williford WO, Peterson OL, et al. A randomized clinical trial of total parenteral nutrition in malnourished surgical patients: the rationale and impact of previous clinical trials and pilot study on protocol design. Am J Clin Nutr. 1988;472 Suppl:357–65.

    Article  CAS  PubMed  Google Scholar 

  68. Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care. 2011;15:R268.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jansen I, Prager M, Valentini L, Büning C. Inflammation-driven malnutrition: a new screening tool predicts outcome in Crohn’s disease. Br J Nutr. 2016;116:1061–7.

    Article  CAS  PubMed  Google Scholar 

  70. Haskey N, Peña-Sánchez JN, Jones JL, Fowler SA. Development of a screening tool to detect nutrition risk in patients with inflammatory bowel disease. Asia Pac J Clin Nutr. 2018;27:756–62.

    PubMed  Google Scholar 

  71. Wall C, Wilson B, Sanderson J, Lomer M. PTH-135 An inflammatory bowel disease-specific nutrition screening tool (IBD-NST) for better outpatient care. Gut. 2019;68Suppl 2:A102-3.

    Google Scholar 

  72. https://www.ncpro.org/nutrition-assessment-snapshot. Accessed April 12, 2021.

  73. Thompson FE, Subar AF. Dietary assessment methodology. In: Coulston AM, Boushey CJ, Ferruzzi MG, Delahanty LM, editors. Nutrition in the Prevention and Treatment of Disease (Fourth Edition). Academic Press; 2017. p. 5–48.

    Chapter  Google Scholar 

  74. Limdi JK, Aggarwal D, McLaughlin JT. Dietary practices and beliefs in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2016;22:164–70.

    Article  PubMed  Google Scholar 

  75. Zallot C, Quilliot D, Chevaux J-B, et al. Dietary beliefs and behavior among inflammatory bowel disease patients. Inflamm Bowel Dis. 2013;19:66–72.

    Article  PubMed  Google Scholar 

  76. Jowett SL, Seal CJ, Phillips E, Gregory W, Barton JR, Welfare MR. Dietary beliefs of people with ulcerative colitis and their effect on relapse and nutrient intake. Clin Nutr. 2004;23:161–70.

    Article  PubMed  Google Scholar 

  77. Butler TL, Fraser GE, Beeson WL, et al. Cohort profile: The Adventist Health Study-2 (AHS-2). Int J Epidemiol. 2008;37:260–5.

    Article  PubMed  Google Scholar 

  78. Burke BS. The dietary history as a tool in research. J Am Diet Assoc. 1947;23:1041–6.

    Article  Google Scholar 

  79. Carter MC, Burley VJ, Nykjaer C, Cade JE. Adherence to a smartphone application for weight loss compared to website and paper diary: pilot randomized controlled trial. J Med Internet Res. 2013;15:e32.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Carter MC, Albar SA, Morris MA, et al. Development of a UK online 24-h dietary assessment tool: myfood24. Nutrients. 2015;7:4016–32.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kirkpatrick SI, Subar AF, Douglass D, et al. Performance of the automated self-administered 24-hour recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am J Clin Nutr. 2014;100:233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Franco RZ, Alawadhi B, Fallaize R, Lovegrove JA, Hwang F. A web-based graphical food frequency assessment system: design, development and usability metrics. JMIR Hum Factors. 2017;4:e13.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liu B, Young H, Crowe FL, et al. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011;14:1998–2005.

    Article  PubMed  Google Scholar 

  84. Martin CK, Correa JB, Han H, et al. Validity of the Remote Food Photography Method (RFPM) for estimating energy and nutrient intake in near real-time. Obesity (Silver Spring). 2012;20:891–9.

    Article  CAS  Google Scholar 

  85. Post RC, Herrup M, Chang S, Leone A. Getting plates in shape using SuperTracker. J Acad Nutr Diet. 2012;112:354–8.

    Article  PubMed  Google Scholar 

  86. Zhang W, Yu Q, Siddiquie B, Divakaran A, Sawhney H. “Snap-n-Eat”: food recognition and nutrition estimation on a smartphone. J Diabetes Sci Technol. 2015;9:525–33.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sun M, Fernstrom JD, Jia W, et al. A wearable electronic system for objective dietary assessment. J Am Diet Assoc. 2010;110:45–7.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Long JD, Littlefield LA, Estep G, et al. Evidence review of technology and dietary assessment. Worldviews Evid Based Nurs. 2010;7:191–204.

    Article  PubMed  Google Scholar 

  89. Crowley J, Ball L, Hiddink GJ. Nutrition in medical education: a systematic review. Lancet Planet Health. 2019;3:e379–89.

    Article  PubMed  Google Scholar 

  90. Macaninch E, Buckner L, Amin P, et al. Time for nutrition in medical education. BMJ Nutr Prev Health. 2020;3:40–8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63 [published correction appears in Lancet. 2004 Mar 13;363:902].

    Article  Google Scholar 

  92. Sood A, Ahuja V, Kedia S, et al. Diet and inflammatory bowel disease: the Asian Working Group guidelines. Indian J Gastroenterol. 2019;38:220–46.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Davidson LE, Wang J, Thornton JC, et al. Predicting fat percent by skinfolds in racial groups: Durnin and Womersley revisited. Med Sci Sports Exerc. 2011;43:542–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ang AM, Chung M, Dong KR, et al. Determining a global mid-upper arm circumference cut-off to assess underweight in adults (men and non-pregnant women). Public Health Nutr. 2020;23:3104–13.

    Article  Google Scholar 

  95. Misra A, Vikram NK, Gupta R, Pandey RM, Wasir JS, Gupta VP. Waist circumference cutoff points and action levels for Asian Indians for identification of abdominal obesity. Int J Obes. 2006;30:106–11.

    Article  CAS  Google Scholar 

  96. Back IR, Marcon SS, Gaino NM, Vulcano DSB, de Dorna MS, Sassaki LY. Body composition in patients with Crohn’s disease and ulcerative colitis. Arq Gastroenterol. 2017;54:109–14.

    Article  PubMed  Google Scholar 

  97. Takada H, Amemiya F, Yasumura T, et al. Utility of the simplified measurements of muscle mass in patients with gastrointestinal and chronic liver diseases. Sci Rep. 2020;10:10795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu L-W, Lin Y-Y, Kao T-W, et al. Mid-arm muscle circumference as a significant predictor of all-cause mortality in male individuals. PLoS One. 2017;12:e0171707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Anani S, Goldhaber G, Brom A, et al. Frailty and sarcopenia assessment upon hospitaladmission to internal medicine predicts length ofhospital stay and re-admission: a prospectivestudy of 980 patients. J Clin Med. 2020;9:2659.

    Article  PubMed Central  Google Scholar 

  100. Capone K, Sentongo T. The ABCs of nutrient deficiencies and toxicities. Pediatr Ann. 2019;48:e434–40.

    Article  PubMed  Google Scholar 

  101. Detsky AS, McLaughlin JR, Baker JP, et al. What is subjective global assessment of nutritional status? J Parenter Enteral Nutr. 1987;11:8–13.

    Article  CAS  Google Scholar 

  102. Lim SL, Lin XH, Daniels L. Seven-point subjective global assessment is more time sensitive than conventional subjective global assessment in detecting nutrition changes. J Parenter Enteral Nutr. 2016;40:966–72.

    Article  Google Scholar 

  103. Planas M, Audivert S, Pérez-Portabella C, et al. Nutritional status among adult patients admitted to an university-affiliated hospital in Spain at the time of genoma. Clin Nutr. 2004;23:1016–24.

    Article  CAS  PubMed  Google Scholar 

  104. Bryant RV, Trott MJ, Bartholomeusz FD, Andrews JM. Systematic review: body composition in adults with inflammatory bowel disease. Aliment Pharmacol Ther. 2013;38:213–25.

    Article  CAS  PubMed  Google Scholar 

  105. Thangarajah D, Hyde MJ, Konteti VKS, Santhakumaran S, Frost G, Fell JME. Systematic review: body composition in children with inflammatory bowel disease. Aliment Pharmacol Ther. 2015;42:142–57.

    Article  CAS  PubMed  Google Scholar 

  106. Lee S, Kuk JL. Changes in fat and skeletal muscle with exercise training in obese adolescents: comparison of whole-body MRI and dual energy X-ray absorptiometry. Obesity (Silver Spring). 2013;21:2063–71.

    Article  Google Scholar 

  107. Kyle UG, Schutz Y, Dupertuis YM, Pichard C. Body composition interpretation: contributions of the fat-free mass index and the body fat mass index. Nutrition. 2003;19:597–604.

    Article  PubMed  Google Scholar 

  108. Pichard C, Kyle UG, Bracco D, Slosman DO, Morabia A, Schutz Y. Reference values of fat-free and fat masses by bioelectrical impedance analysis in 3393 healthy subjects. Nutrition. 2000;16:245–54.

    Article  CAS  PubMed  Google Scholar 

  109. Franssen FME, Rutten EPA, Groenen MTJ, Vanfleteren LE, Wouters EFM, Spruit MA. New reference values for body composition by bioelectrical impedance analysis in the general population: results from the UK Biobank. J Am Med Dir Assoc. 2014;15:448.e1-6.

    Google Scholar 

  110. Lee M-M, Jebb SA, Oke J, Piernas C. Reference values for skeletal muscle mass and fat mass measured by bioelectrical impedance in 390 565 UK adults. J Cachexia Sarcopenia Muscle. 2020;11:487–96.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Parker L, Reilly JJ, Slater C, Wells JCK, Pitsiladis Y. Validity of six field and laboratory methods for measurement of body composition in boys. Obes Res. 2003;11:852–8.

    Article  PubMed  Google Scholar 

  112. Wells JCK, Fewtrell MS. Measuring body composition. Arch Dis Child. 2006;91:612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Benjamin J, Makharia G, Ahuja V, Joshi YK. Body composition in Indian patients with Crohn’s disease during active and remission phase. Trop Gastroenterol. 2011;32:285–91.

    PubMed  Google Scholar 

  114. Yadav DP, Kedia S, Madhusudhan KS, et al. Body composition in Crohn’s disease and ulcerative colitis: correlation with disease severity and duration. Can J Gastroenterol Hepatol. 2017;2017:1215035.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kuriyan R, Selvan S, Thomas T, et al. Body composition percentiles in Urban South Indian Children and Adolescents. Obesity. 2018;26:1629–36.

    Article  PubMed  Google Scholar 

  116. Lee SJ, Janssen I, Heymsfield SB, Ross R. Relation between whole-body and regional measures of human skeletal muscle. Am J Clin Nutr. 2004;80:1215–21.

    Article  CAS  PubMed  Google Scholar 

  117. Schweitzer L, Geisler C, Pourhassan M, et al. What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am J Clin Nutr. 2015;102:58–65.

    Article  CAS  PubMed  Google Scholar 

  118. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep. 2018;8:11369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kim JS, Kim WY, Park HK, Kim MC, Jung W, Ko BS. Simple age specific cutoff value for sarcopenia evaluated by computed tomography. Ann Nutr Metab. 2017;71:157–63.

    Article  CAS  PubMed  Google Scholar 

  120. van der Werf A, Langius JAE, de van der Schueren MAE, et al. Percentiles for skeletal muscle index, area and radiation attenuation based on computed tomography imaging in a healthy Caucasian population. Eur J Clin Nutr. 2018;72:288–96.

    Article  PubMed  Google Scholar 

  121. Walowski CO, Braun W, Maisch MJ, et al. Reference values for skeletal muscle mass - current concepts and methodological considerations. Nutrients. 2020;12:755.

    Article  CAS  PubMed Central  Google Scholar 

  122. Benjamin J, Shasthry V, Kaal CR, et al. Characterization of body composition and definition of sarcopenia in patients with alcoholic cirrhosis: a computed tomography based study. Liver Int. 2017;37:1668–74.

    Article  PubMed  Google Scholar 

  123. Dodds RM, Syddall HE, Cooper R, et al. Grip strength across the life course: normative data from twelve British studies. PLoS One. 2014;9:e113637.

  124. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69:547–58.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Anjum SN, Choudary P, Dimri R, Ankarath S. Comparative evaluation of grip and pinch strength in an Asian and European population. Hand Ther. 2012;17:11–4.

    Article  Google Scholar 

  126. Chen L-K, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21:300-307.e2.

    Article  PubMed  Google Scholar 

  127. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–9.

    Article  CAS  PubMed  Google Scholar 

  128. Beaudart C, McCloskey E, Bruyère O, et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 2016;16:170.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kilby K, Mathias H, Boisvenue L, Heisler C, Jones JL. Micronutrient absorption and related outcomes in people with inflammatory bowel disease: a review. Nutrients. 2019;11:E1388.

    Article  PubMed  CAS  Google Scholar 

  130. Burr NE, Hull MA, Subramanian V. Folic acid supplementation may reduce colorectal cancer risk in patients with inflammatory bowel disease: a systematic review and meta-analysis. J Clin Gastroenterol. 2017;51:247–53.

    Article  CAS  PubMed  Google Scholar 

  131. Gasche C. Anemia in IBD: the overlooked villain. Inflamm Bowel Dis. 2000;6:142–50.

    Article  CAS  PubMed  Google Scholar 

  132. Han YM, Yoon H, Lim S, et al. Risk factors for vitamin D, zinc, and selenium deficiencies in korean patients with inflammatory bowel disease. Gut Liver. 2017;11:363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vasilaki AT, Leivaditi D, Talwar D, et al. Assessment of vitamin E status in patients with systemic inflammatory response syndrome: plasma, plasma corrected for lipids or red blood cell measurements? Clin Chim Acta Int J Clin Chem. 2009;409:41–5.

    Article  CAS  Google Scholar 

  134. Sandall AM, Wall CL, Lomer MCE. Nutrition assessment in crohn’s disease using anthropometric, biochemical, and dietary indexes: a narrative review. J Acad Nutr Diet. 2020;120:624–40.

    Article  PubMed  Google Scholar 

  135. Hwang C, Issokson K, Giguere-Rich C, et al. Development and pilot testing of the inflammatory bowel disease nutrition care pathway. Clin Gastroenterol Hepatol. 2020;18:2645-2649.e4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

1. ArS: conception; collection, drafting of the article, critical revision of the article for important intellectual content; final approval of the article. 2. CW: drafting of the article; critical revision of the article for important intellectual content; final approval of the article. 3. AL: critical revision of the article for important intellectual content; final approval of the article. 4. VM: conception and design; supervision; critical revision of the article for important intellectual content; final approval of the article. 5. RM: critical revision of the article for important intellectual content; final approval of the article. 6. AS: conception and design; supervision, drafting of the article; critical revision of the article for important intellectual content; final approval of the article.

Corresponding author

Correspondence to Ajit Sood.

Ethics declarations

Conflict of interest

ArS, CW, VM, RM, and AS declare that they have no conflict of interest.

Arie Levine reports grants from Nestle Health Science and grants from Janssen unrelated to this field; advisory boards, travel, speaker fees, or DSMBs from Celgene, Takeda, and AbbVie; and a licensing and consulting agreement with IP with Nestle Health to develop new products based on diet.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Wall, C., Levine, A. et al. Nutritional screening and assessment in inflammatory bowel disease. Indian J Gastroenterol 41, 5–22 (2022). https://doi.org/10.1007/s12664-021-01223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12664-021-01223-2

Keywords

Navigation