Skip to main content

Advertisement

Log in

Ontological concepts for information sharing in cloud robotics

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Recent research and developments in cloud robotics (CR) require appropriate knowledge representation to ensure interoperable data, information, and knowledge sharing within cloud infrastructures. As an important branch of the Internet of Things (IoT), these demands to advance it forward motivates academic and industrial sectors to invest on it. The IEEE ’Ontologies for Robotics and Automation’ Working Group (ORA WG) has been developing standard ontologies for different robotic domains, including industrial and autonomous robots. The use of such robotic standards has the potential to benefit the Cloud Robotic Community (CRC) as well, supporting the provision of ubiquitous intelligent services by the CR-based systems. This paper explores this potential by developing an ontological approach for effective information sharing in cloud robotics scenarios. It presents an extension to the existing ontological standards to cater for the CR domain. The use of the new ontological elements is illustrated through its use in a couple of CR case studies. To the best of our knowledge, this is the first work ever that implements an ontology comprising concepts and axioms applicable to the CR domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. https://standards.ieee.org/develop/project/1872.2.html

  2. http://www.sensorml.com/

  3. https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

  4. http://www.adampease.org/OP/

  5. The OWL file with the complete ontology can be found at https://drive.google.com/file/d/1Jx-KYa_1hbYitYmEo4Lu7tV29qOKXHmU/view?usp=sharing

  6. The complete implementation of the knowledge base and the case studies can be found at https://github.com/CloudRobotics-TAMP/RTASK-KB.git

References

  • Arumugam R, Enti VR, Bingbing L, Xiaojun W, Baskaran K, Kong FF, Kumar AS, Meng KD, Kit GW (2010) Davinci: a cloud computing framework for service robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp 3084–3089

  • Aziez M, Benharzallah S, Bennoui H (2017) An ontology based context model for the discovery of iot services in the internet of things. In: 2017 International Conference on Mathematics and Information Technology (ICMIT), pp 209–213, https://doi.org/10.1109/MATHIT.2017.8259719

  • Balakirsky S, Kootbally Z, Schlenoff C, Kramer T, Gupta S (2012) An industrial robotic knowledge representation for kit building applications. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1365–1370

  • Barwise J (1977) An introduction to first-order logic. Stud Log Found Math 90:5–46

    Article  MathSciNet  Google Scholar 

  • Bayat B, Bermejo-Alonso J, Carbonera J, Facchinetti T, Fiorini S, Goncalves P, Jorge VA, Habib M, Khamis A, Melo K, Nguyen B, Olszewska JI, Paull L, Prestes E, Ragavan V, Saeedi S, Sanz R, Seto M, Spencer B, Vosughi A, Li H (2016) Requirements for building an ontology for autonomous robots. Ind Robot 43(5):469–480

    Article  Google Scholar 

  • Bermejo-Alonso J, Sanz R, Rodriguez M, Hernandez C (2010) Ontology-based engineering of autonomous systems. In: 2010 Sixth International Conference on Autonomic and Autonomous Systems, pp 47–51

  • Bozcuoğlu AK, Kazhoyan G, Furuta Y, Stelter S, Beetz M, Okada K, Inaba M (2018) The exchange of knowledge using cloud robotics. IEEE Robot Autom Lett 3(2):1072–1079

    Article  Google Scholar 

  • Bruckner D, Picus C, Velik R, Herzner W, Zucker G (2012) Hierarchical semantic processing architecture for smart sensors in surveillance networks. IEEE Trans Ind Inform 8(2):291–301

    Article  Google Scholar 

  • Davoudian A, Chen L, Liu M (2018) A survey on nosql stores. ACM Comput Surv. https://doi.org/10.1145/3158661

    Article  Google Scholar 

  • de Moraes SR, Pignaton de Freitas E (2018) Distributed control for groups of unmanned aerial vehicles performing surveillance missions and providing relay communication network services. J Intell Robot Syst 92:645–656. https://doi.org/10.1007/s10846-017-0726-z

    Article  Google Scholar 

  • de Moraes RS, Pignaton de Freitas E (2020) Multi-uavbased crowd monitoring system. IEEE Trans Aerosp Electron Syst 56(2):1332–1345

    Article  Google Scholar 

  • Diab M, Akbari A, Ud Din M, Rosell J (2019) Pmk–a knowledge processing framework for autonomous robotics perception and manipulation. Sensors 19(5):1166

    Article  Google Scholar 

  • Dogmus Z, Erdem E, Patoglu V (2015) Rehabrobo-onto: design, development and maintenance of a rehabilitation robotics ontology on the cloud. Robot Comput Integr Manuf 33:100–109

    Article  Google Scholar 

  • Fiorini SR, Bermejo-Alonso J, Goncalves P, Pignaton de Freitas E, Olivares Alarcos A, Olszewska JI, Prestes E, Schlenoff C, Ragavan SV, Redfield S, Spencer B, Li H (2017) A suite of ontologies for robotics and automation. IEEE Robot Autom Mag 24(1):8–11

    Article  Google Scholar 

  • Gangemi A (2008) Norms and plans as unification criteria for social collectives. Auton Agents Multi-Agent Syst 17(1):70–112

    Article  Google Scholar 

  • Gazebo tutorials (2014). http://gazebosim.org/tutorials/, Online; Accessed 22 Nov 2019

  • Guizzo E (2011) Robots with their heads in the clouds. IEEE Spectrum 48(3):16–18

    Article  Google Scholar 

  • Gyrard A, Zimmermann A, Sheth A (2018) Building iot-based applications for smart cities: How can ontology catalogs help? IEEE Internet Things J 5(5):3978–3990. https://doi.org/10.1109/JIOT.2018.2854278

    Article  Google Scholar 

  • Herbst N, Kounev S, Reussner R (2013) Elasticity in cloud computing: What it is, and what it is not. In: International Conference on Autonomic Computing, pp 23–27

  • Hu G, Tay WP, Wen Y (2012) Cloud robotics: architecture, challenges and applications. IEEE Network 26(3):21–28

    Article  Google Scholar 

  • IEEE Standard for Robot Map Data Representation for Navigation (2015). IEEE Std 1873-2015, pp 1–54

  • IEEE Standard Ontologies for Robotics and Automation (2015) . IEEE Std 1872-2015, pp 1–60

  • Kehoe B, Patil S, Abbeel P, Goldberg K (2015a) A survey of research on cloud robotics and automation. IEEE Trans Autom Sci Eng 12(2):398–409

    Article  Google Scholar 

  • Kehoe B, Patil S, Abbeel P, Goldberg K (2015b) A survey of research on cloud robotics and automation. IEEE Trans Autom Sci Eng 12(2):398–409

    Article  Google Scholar 

  • Khamis A, Hussein A, Elmogy A (2015) Multi-robot task allocation: a review of the state of the art. Cooperative robots and sensor networks. Springer, New York, pp 31–51

    Google Scholar 

  • Kunst R, Avila L, Binotto A, Pignaton E, Bampi S, Rochol J (2019) Improving devices communication in industry 4.0 wireless networks. Eng Appl Artif Intell 83:1–12. https://doi.org/10.1016/j.engappai.2019.04.014

    Article  Google Scholar 

  • Liu B, Chen Y, Blasch E, Pham K, Shen D, Chen G (2014) A holistic cloud-enabled robotics system for real-time video tracking application. Springer, Berlin Heidelberg, pp 455–468

    Google Scholar 

  • Lowe E (2010) Action theory and ontology. Companion Philos Action 662:662

    Google Scholar 

  • Lu Y, Xu X (2019) Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services. Robot Comput Integr Manuf 57:92–102

    Article  Google Scholar 

  • Marques P, Manfroi D, Deitos E, Cegoni J, Castilhos R, Rochol J, Pignaton E, Kunst R (2019) An IoT-based smart cities infrastructure architecture applied to a waste management scenario. Ad Hoc Netw 87:200–208. https://doi.org/10.1016/j.adhoc.2018.12.009

    Article  Google Scholar 

  • Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A (2003) Wonderweb deliverable d18: Ontology library. Technical report. Laboratory for Applied Ontology, ISTC-CNR, Italy

    Google Scholar 

  • Mell P, Grance T (2011) The NIST definition of cloud computing. NIST Special Publication 800-145

  • Miratabzadeh SA, Gallardo N, Gamez N, Haradi K, Puthussery AR, Rad P, Jamshidi M (2016) Cloud robotics: A software architecture. In: IEEE World Automation Congress, pp 1–6

  • Niles I, Pease A (2001) Towards a standard upper ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems - Volume 2001, Association for Computing Machinery, New York, NY, USA, FOIS ’01, p 2–9, https://doi.org/10.1145/505168.505170

  • Okresa Duric B, Rincon J, Carrascosa C, Schatten M, Julian V (2019) Mambo5: a new ontology approach for modelling and managing intelligent virtual environments based on multi-agent systems. J Ambient Intell Humaniz Comput 10(9):3629–3641. https://doi.org/10.1007/s12652-018-1089-4

    Article  Google Scholar 

  • Olivares-Alarcos A, Bessler D, Khamis A, Goncalves P, Habib MK, Bermejo-Alonso J, Barreto M, Diab M, Rosell J, Quintas J, Olszewska JI, Nakawala H, Pignaton E, Gyrard A, Borgo S, Alenya G, Beetz M, Li H (2019) A review and comparison of ontology-based approaches to robot autonomy. Knowl Eng Rev 34:1–38

    Article  Google Scholar 

  • Olszewska JI, Barreto M, Bermejo-Alonso J, Carbonera J, Chibani A, Fiorini S, Goncalves P, Habib M, Khamis A, Olivares A, Freitas EP, Prestes E, Ragavan SV, Redfield S, Sanz R, Spencer B, Li H (2017) Ontology for autonomous robotics. In: IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp 189–194

  • Olszewska J (2017) Clock-model-assisted agent’s spatial navigation. Proc Int Conf Agents Artif Intell 2:687–692

    Google Scholar 

  • Prestes E, Carbonera JL, Fiorini SR, Jorge VAM, Abel M, Madhavan R, Locoro A, Goncalves P, Barreto ME, Habib M, Chibani A, Gérard S, Amirat Y, Schlenoff C (2013) Towards a core ontology for robotics and automation. Robot Auton Syst 61(11):1193–1204

    Article  Google Scholar 

  • Quigley M, Gerkey B, Smart W (2015) Programming Robots with ROS: A Practical Introduction to the Robot Operating System. O’Reilly Media, https://books.google.com.br/books?id=Hnz5CgAAQBAJ. Accessed 10 Mar 2020

  • Quintas JM, Menezes PJ, Dias JM (2011) Cloud Robotics: Toward Context Aware Robotic Networks. In: Biomechanics/752:Robotics, Actapress

  • Quintas JML (2018) Context-based human-machine interaction framework for arti ficial social companions. PhD thesis, 00500:: Universidade de Coimbra

  • Quintas J, Martins GS, Santos L, Menezes P, Dias J (2018) Toward a context-aware human-robot interaction framework based on cognitive development. IEEE Trans Syst Man Cybern Syst 49(1):227–237

    Article  Google Scholar 

  • Quintas J, Menezes P, Dias J (2017) Interoperability in cloud robotics—developing and matching knowledge information models for heterogenous multi-robot systems. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), IEEE, pp 1291–1296

  • Rahimi R, Shao C, Veeraraghavan M, Fumagalli A, Nicho J, Meyer J, Edwards S, Flannigan C, Evans P (2017) An industrial robotics application with cloud computing and high-speed networking. In: IEEE International Conference on Robotic Computing, pp 44–51

  • Schlenoff C, Hong T, Liu C, Eastman R, Foufou S (2013) A literature review of sensor ontologies for manufacturing applications. In: IEEE International Symposium on Robotic and Sensors Environments, pp 96–101

  • Sim KM (2012) Agent-based cloud computing. IEEE Trans Serv Comput 5(4):564–577. https://doi.org/10.1109/TSC.2011.52

    Article  Google Scholar 

  • Soldatova LN, Clare A, Sparkes A, King RD (2006) An ontology for a robot scientist. Bioinformatics 22(14):e464–e471

    Article  Google Scholar 

  • Studer R, Benjamins VR, Fensel D (1998) Knowledge engineering: principles and methods. Data Knowl Eng 25(1–2):161–197

    Article  MATH  Google Scholar 

  • Tenorth M, Beetz M (2013) Knowrob: a knowledge processing infrastructure for cognition-enabled robots. Int J Robot Res 32(5):566–590. https://doi.org/10.1177/0278364913481635

    Article  Google Scholar 

  • Tosello E, Castaman N, Michieletto S, Menegatti E (2018a) Teaching robot programming for industry 4.0. In: International Conference of Educational Robotics (EduRobotics)

  • Tosello E, Fan Z, Gatto Castro A, Pagello E (2018b) RTASK: a cloudbased knwoledge engine for robot task and motion planning. J Robot Auton Syst (under review). https://www.dei.unipd.it/~toselloe/pdf/IAS15-special_issue.pdf. Accessed 7 June 2020

  • Waibel M, Beetz M, Civera J, D’Andrea R, Elfring J, Gálvez-López D, Häussermann K, Janssen R, Montiel JMM, Perzylo A, Schießle B, Tenorth M, Zweigle O, Molengraft RVD (2011) Roboearth. IEEE Robot Autom Mag 18(2):69–82

    Article  Google Scholar 

  • Wang S, Krishnamachari B, Ayanian N (2015) The optimism principle: A unified framework for optimal robotic network deployment in an unknown obstructed environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 2578–2584

  • Xie C, Cai H, Xu L, Jiang L, Bu F (2017) Linked semantic model for information resource service towards cloud manufacturing. IEEE Trans Ind Inform 13(6):3338–3349

    Article  Google Scholar 

  • Yazdani F, Kazhoyan G, Bozcuoglu AK, Haidu A, Balint-Benczedi F, Beßler D, Pomarlan M, Beetz M (2018) Cognition-enabled framework for mixed human-robot rescue team. In: International Conference on Intelligent Robots and Systems (IROS), IEEE, Madrid, Spain

  • Zinchenko K, Wu CY, Song KT (2017) A study on speech recognition control for a surgical robot. IEEE Trans Ind Inform 13(2):607–615

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Innovate UK; CNPq and CAPES in Brazil; FRGS/1/2015/TK08/MUSM/02/1 in Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edison Pignaton de Freitas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pignaton de Freitas, E., Olszewska, J.I., Carbonera, J.L. et al. Ontological concepts for information sharing in cloud robotics. J Ambient Intell Human Comput 14, 4921–4932 (2023). https://doi.org/10.1007/s12652-020-02150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02150-4

Keywords