Skip to main content
Log in

Analysis of micro-blog diffusion using a dynamic fluid model

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Various methods on the display of dynamic information diffusion for social media have been proposed. Most of them use data mining approaches to explore the behaviors and interactions between users. Such approaches are unable to reveal the complex mechanism and the process of information diffusion. Lattice Boltzmann Method (LBM) models fluid behaviors at the microscopic scale, similar to the information diffusion in social media that is determined by the collective behavior of many personal retweeting of topics. We propose an information diffusion model inspired by the fundamental idea of LBM to analyze and simulate users’ communicating behaviors and processes in Micro-blogging. The micro-blog space is regarded as an artificial physical system with social phenomena such as micro-blog bursting. The macroscopic properties of the information diffusion model are explored to simulate and predict the trend of information diffusion for any specific topic. A novel visualization style mimicking fluid dynamics is proposed to help understand the scale of information diffusion and the popularity of a topic. The flow visualization based on the speed of information diffusion is useful in discovering typical information diffusion patterns for different types of topics in social networks. Comparing with other approaches, our approach provides more effective yet intuitive simulation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bosch H, Dennis T, Florian H, Edwin P, Steffen K, Robert K, Michael W, Thomas E (2013) Scatterblogs2: real-time monitoring of microblog messages through user-guided filtering. IEEE Trans Visual Comput Graphics 19(12):2022–2031

    Article  Google Scholar 

  • Cao N, Lin Y, Sun X, Lazer D, Liu S, Qu H (2012) Whisper: tracing the spatiotemporal process of information diffusion in real time. IEEE Trans Visual Comput Graphics 18(12):2649–2658

    Article  Google Scholar 

  • Card S, Mackinlay J, Shneiderman B (1999) Readings in information visualization: using vision to think, Morgan Kaufmann

  • Carroll J, Kellogg W, Mack R (1987) Interface metaphors and user interface design

  • Cha M, Benevenuto F, Haddadi H, Gummadi K (2012) The World of Connections and Information Flow in Twitter. IEEE Trans Syst Man Cybern 42(4):991–998

    Article  Google Scholar 

  • Deffuant G, Amblard F, Weidbuch G, Faure T (2002) How can extremism prevail? A study based on the relative agreement model. J Artif Social Simul 5(4)

  • Gentner D (1983) Structure-mapping: a theoretical framework foranalogy. Cognitive Science 7(2):155–170

    Article  Google Scholar 

  • Hansen M, Thorp J, Porway J (2011) NYTLabs Cascade: how information propagates through social media, Visualization Blog on Information Aesthetics

  • Harel D, Koren Y (2000) A fast multi-scale method for drawing large graphs, In: Proceeding AVI ‘00 Proceedings of the working conference on advanced visual interfaces, pp 282–285

  • Ho C, Li C, Lin S (2011) Modeling and visualizing information propagation in a micro-blogging platform, In: International Conference on Advances in Social Network Analysis and Mining, pp 328–335

  • Holyst JA, Kacperski K, Schweitzer F (2001) Annual reviews of computational physics, World Scientific

  • Huron S, Vuillemot R, Fekete J (2013) Visual sedimentation. IEEE Trans Vis Comput Graphics

  • Kamada T, Kawai S (1989) An algorithm for drawing general undirected-graphs. Inform Process Lett 31:7–15

    Article  MATH  MathSciNet  Google Scholar 

  • Kossinets G, Kleinberg J, Watts D (2008) The structure of information pathways in a social communication network, KDD

  • Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social network or a news media? In: Proceedings of the ACM International Conference on World Wide Web, pp 591–600

  • Leskovec J, McGlohon M, Faloutsos C, Glance N, Hurst M (2007) Cascading behavior in large blog graphs, SDM

  • Liben-Nowell D, Kleinberg J (2008) Tracing information flow on a global scale using Internet chain-letter data. PNAS 105(12):4633–4638

    Article  Google Scholar 

  • Mambrey P (1996) Chapter 9 metaphors as requirement analysistools: The market metaphor in cscw system design. In M. T. Dan Shapiro and Traunmuller R, editors, The design of computer supported cooperative work and groupware systems, vol 12 of Human Factors in Information Technology, North-Holland, pp 130–150

  • McKelvey K, Rudnick A, Conover MD, Menczer F (2012) Visualizing communication on social media: making big data accessible. arXiv preprint arXiv:1202.1367

  • McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice gas automata. Phys Rev Lett 61(20):2332–2335

    Article  Google Scholar 

  • Mitleton-Kelly E (2003) Complex systems and evolutionary perspectives of organisations. Elsevier, London

    Google Scholar 

  • Ren D, Zhang X, Wang Z, Li J, Yuan X (2014) WeiboEvents: a crowd sourcing weibo visual analytic system. In: Pacific Visualization Symposium (PacificVis), IEEE pp 330–334)

  • Romero D, Meeder B, Kleinberg J (2011) Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter, In: Proceedings of the ACM International Conference on World Wide Web, p 695–704

  • Suh B, Hong L, Pirolli P, Chi EH (2010) Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network, Second IEEE International Conference on Social Computing, pp 177–184

  • Sznajd-Weron K, Sznajd J (2000) Int J Mod Phys C 11: 1157

  • Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks, KDD

  • Urry J (2003) Social networks, travel and talk. Br J Sociol 155–176

  • Veldhuisen J, Timmermans H, Kapoen L (2011) Micro-simulation model of activity travel patterns and traffic flows: specification, validation tests, and Monte Carlo error, Transportation Research Record. 126–13

  • Viegas F, Wattenberg M (2011) Google + Ripples: revealing how posts are shared over time, Visualization Blog on Information Aesthetics

  • Wei X, Li W, Mueller K, Kaufman A (2002) Simulating fire with texture splats, IEEE Visualization’02. IEEE Computer Society, Washington, USA, pp 227–234

    Google Scholar 

  • Wei X, Li W, Mueller K, Kaufman A (2004) The Lattice-Boltzmann method for gaseous phenomena. IEEE Trans Visual Comput Graphics 10(2):164–176

    Article  Google Scholar 

  • Xie J, Zhang C, Wu M (2011) Modeling microblogging communication based on human dynamics. In: Eighth International Conference on Fuzzy Systems and Knowledge Discovery. pp 2290–2294

  • Yang J, Counts S (2010a) Comparing information diffusion structure in weblogs and micro-blogs. In: Proceeding of the International AAAI Conference on Weblogs and Social Media

  • Yang J, Counts S (2010b) Predicting the speed, scale, and range of information diffusion in Twitter. Proc, ICWSM

    Google Scholar 

  • Yang Z, Guo J, Cai K, Tang J, Li J, Zhang L, Su Z (2010) Understanding retweeting behaviors in social networks, Social and Behavioral Sciences. pp 1633–1636

  • Ye S, Wu S (2010) Measuring message propagation and social influence on twitter.com. In: Proceedings of the International Conference on Social Informatics. pp 216–231

  • Ziemkiewicz C, Kosara R (2008) The shaping of information by visual metaphors. TVCG 14(6):1269–1276

    Google Scholar 

Download references

Acknowledgments

This paper was supported in part by Natural Science Foundation of China under Grants 61272199, and the National High-tech R&D Program of China (863 Program) under Grant no. SS2015AA010504, and Innovation Program of Shanghai Municipal Education Commission under Grants 12ZZ042, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grants 20130076110008, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant no. ZF1213. The authors would like to thank Weining Qian and Qunyan Zhang for providing the data on Sina micro-blog. The authors also thank the anonymous reviewers for their insightful comments that have helped us to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changbo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, C., Ye, P. et al. Analysis of micro-blog diffusion using a dynamic fluid model. J Vis 18, 201–219 (2015). https://doi.org/10.1007/s12650-015-0277-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-015-0277-y

Keywords

Navigation