Skip to main content
Log in

Growth of the Red Alga Galdieria sulphuraria in Red Mud-Containing Medium and Accumulation of Rare Earth Elements

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Red mud is a by-product of the production of alumina from bauxite ore. However, less than 2% of red mud produced is currently utilized. Red mud contains a number of residual scarce metals including rare earth elements, some at a considerable concentration, so synchronous cultures of the red microalga Galdieria sulphuraria were tested for their ability to grow in red mud-containing medium and accumulate these rare earth elements from the mud. Red mud was added to the growth medium as an acid extract (in 10% v/v HNO3). Pigment content and photosynthetic performance are indicators of physiological condition and stress levels in microalgae. Growth of the treated culture was suppressed compared to an untreated control and the content of chlorophyll a and phycocyanin decreased while carotenoids increased substantially. Photosynthetic performance, determined as Fv/Fm, was almost unaffected by the red mud treatment. The concentration of individual rare earth elements in the red mud extract and the biomass, was determined using ICP-MS. The most accumulated rare earth elements were Ce, Nd, La, and Y (26, 15, 11 and 11 µg g−1 DM, respectively). G. sulphuraria was also cultivated under different trophic regimes, auto- and mixotrophically, with the addition of red mud extract. Growth of all cultures were comparable. The concentration of total accumulated rare earth elements was surprisingly high in mixotrophic G. sulphuraria (109 µg g−1 DM) but was tenfold lower in the autotrophic culture.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Čížková, M., Mezricky, D., Rucki, M., Tóth, T.M., Náhlík, V., Lanta, V., Bišová, K., Zachleder, V., Vítová, M.: Bio-mining of lanthanides from red mud by green microalgae. Molecules 24, 1356 (2019). https://doi.org/10.3390/molecules24071356

    Article  Google Scholar 

  2. Liu, Y., Naidu, R.: Hidden values in bauxite residue (red mud): recovery of metals. Waste Manage. 34, 2662–2673 (2014). https://doi.org/10.1016/j.wasman.2014.09.003

    Article  Google Scholar 

  3. Archambo, M., Kawatra, S.: Red mud: fundamentals and new avenues for utilization. Miner. Process. Extr. Metall. Rev. 42, 427–450 (2021). https://doi.org/10.1080/08827508.2020.1781109

    Article  Google Scholar 

  4. Ujaczki, É., Feigl, V., Molnár, M., Cusack, P., Curtin, T., Courtney, R., O’Donoghue, L., Davris, P., Hugi, C., Evangelou, M.W.: Re-using bauxite residues: benefits beyond (critical raw) material recovery. J. Chem. Technol. Biotechnol. 93, 2498–2510 (2018). https://doi.org/10.1002/jctb.5687

    Article  Google Scholar 

  5. Cusack, P.B., Courtney, R., Healy, M.G., O’Donoghue, L.M., Ujaczki, É.: An evaluation of the general composition and critical raw material content of bauxite residue in a storage area over a twelve-year period. J. Clean. Prod. 208, 393–401 (2019). https://doi.org/10.1016/j.jclepro.2018.10.083

    Article  Google Scholar 

  6. Mancheri, N.A., Sprecher, B., Bailey, G., Ge, J., Tukker, A.: Effect of Chinese policies on rare earth supply chain resilience. Resour Conserv Recycl. 142, 101–112 (2019). https://doi.org/10.1016/j.resconrec.2018.11.017

    Article  Google Scholar 

  7. Omodara, L., Pitkäaho, S., Turpeinen, E.-M., Saavalainen, P., Oravisjärvi, K., Keiski, R.L.: Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications - a review. J. Clean. Prod. 236, 117573 (2019). https://doi.org/10.1016/j.jclepro.2019.07.048

    Article  Google Scholar 

  8. Pollmann, K., Kutschke, S., Matys, S., Raff, J., Hlawacek, G., Lederer, F.L.: Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnol. Adv. 36, 1048–1062 (2018). https://doi.org/10.1016/j.biotechadv.2018.03.006

    Article  Google Scholar 

  9. Yu, Z., Han, H., Feng, P., Zhao, S., Zhou, T., Kakade, A., Kulshrestha, S., Majeed, S., Li, X.: Recent advances in the recovery of metals from waste through biological processes. Bioresour. Technol. 297, 122416 (2020). https://doi.org/10.1016/j.biortech.2019.122416

    Article  Google Scholar 

  10. Qu, Y., Lian, B.: Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour. Technol. 136, 16–23 (2013). https://doi.org/10.1016/j.biortech.2013.03.070

    Article  Google Scholar 

  11. Park, D.M., Reed, D.W., Yung, M.C., Eslamimanesh, A., Lencka, M.M., Anderko, A., Fujita, Y., Riman, R.E., Navrotsky, A., Jiao, Y.: Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags. Environ. Sci. Technol. 50, 2735–2742 (2016). https://doi.org/10.1021/acs.est.5b06129

    Article  Google Scholar 

  12. Minoda, A., Sawada, H., Suzuki, S., Miyashita, S.-I., Inagaki, K., Yamamoto, T., Tsuzuki, M.: Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Appl. Microbiol. Biotechnol. 99, 1513–1519 (2015). https://doi.org/10.1007/s00253-014-6070-3

    Article  Google Scholar 

  13. Correa, F.D., Luna, A.S., da Costa, A.C.: Kinetics and equilibrium of lanthanum biosorption by free and immobilized microalgal cells. Adsorp. Sci. Technol. 35, 137–152 (2017)

    Article  Google Scholar 

  14. Ramasamy, D.L., Porada, S., Sillanpää, M.: Marine algae: a promising resource for the selective recovery of scandium and rare earth elements from aqueous systems. J. Chem. Eng. 371, 759–768 (2019). https://doi.org/10.1016/j.cej.2019.04.106

    Article  Google Scholar 

  15. Fischer, C.B., Körsten, S., Rösken, L.M., Cappel, F., Beresko, C., Ankerhold, G., Schönleber, A., Geimer, S., Ecker, D., Wehner, S.: Cyanobacterial promoted enrichment of rare earth elements europium, samarium and neodymium and intracellular europium particle formation. RSC Adv. 9, 32581–32593 (2019). https://doi.org/10.1039/C9RA06570A

    Article  Google Scholar 

  16. Borra, C.R., Pontikes, Y., Binnemans, K., Van Gerven, T.: Leaching of rare earths from bauxite residue (red mud). Miner. Eng. 76, 20–27 (2015)

    Article  Google Scholar 

  17. Borra, C.R., Blanpain, B., Pontikes, Y., Binnemans, K., Van Gerven, T.: Comparative analysis of processes for recovery of rare earths from bauxite residue. JOM 68, 2958–2962 (2016). https://doi.org/10.1007/s11837-016-2111-y

    Article  Google Scholar 

  18. Dubey, K., Dubey, K.: A study of the effect of red mud amendments on the growth of cyanobacterial species. Bioremediation J. 15, 133–139 (2011). https://doi.org/10.1080/10889868.2011.598483

    Article  Google Scholar 

  19. Gross, W., Kuever, J., Tischendorf, G., Bouchaala, N., Büsch, W.: Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur. J. Phycol. 33, 25–31 (1998). https://doi.org/10.1080/09670269810001736503

    Article  Google Scholar 

  20. Ciniglia, C., Yoon, H.S., Pollio, A., Pinto, G., Bhattacharya, D.: Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol. Ecol. 13, 1827–1838 (2004). https://doi.org/10.1111/j.1365-294X.2004.02180.x

    Article  Google Scholar 

  21. Reeb, V., Bhattacharya, D.: The thermo-acidophilic cyanidiophyceae (Cyanidiales). In: Seckbach, J., Chapman, D. (eds.) Red algae in the genomic age, pp. 409–426. Springer, Dordrecht (2010)

    Chapter  Google Scholar 

  22. Gross, W., Schnarrenberger, C.: Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol. 36, 633–638 (1995). https://doi.org/10.1093/oxfordjournals.pcp.a078803

    Article  Google Scholar 

  23. Oesterhelt, C., Schmälzlin, E., Schmitt, J.M., Lokstein, H.: Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria. Plant J. 51, 500–511 (2007). https://doi.org/10.1111/j.1365-313X.2007.03159.x

    Article  Google Scholar 

  24. Náhlík, V., Zachleder, V., Čížková, M., Bišová, K., Singh, A., Mezricky, D., Řezanka, T., Vítová, M.: Growth under different trophic regimes and synchronization of the red microalga Galdieria sulphuraria. Biomolecules 11, 939 (2021). https://doi.org/10.3390/biom11070939

    Article  Google Scholar 

  25. Jong, L.W., Fujiwara, T., Hirooka, S., Miyagishima, S.-Y.: Cell size for commitment to cell division and number of successive cell divisions in cyanidialean red algae. Protoplasma 258, 1103–1118 (2021). https://doi.org/10.1007/s00709-021-01628-y

    Article  Google Scholar 

  26. Yoshimura, E., Nagasaka, S., Sato, Y., Satake, K., Mori, S.: Extraordinary high aluminium tolerance of the acidophilic thermophilic alga. Cyanidium caldarium. Soil Sci. Plant Nutr. 45, 721–724 (1999). https://doi.org/10.1080/00380768.1999.10415835

    Article  Google Scholar 

  27. Nagasaka, S., Nishizawa, N.K., Watanabe, T., Mori, S., Yoshimura, E.: Evidence that electron-dense bodies in Cyanidium caldarium have an iron-storage role. Biometals 16, 465–470 (2003). https://doi.org/10.1023/A:1022563600525

    Article  Google Scholar 

  28. Čížková, M., Mezricky, P., Mezricky, D., Rucki, M., Zachleder, V., Vítová, M.: Bioaccumulation of rare earth elements from waste luminophores in the red algae. Galdieria phlegrea. Waste Biomass Valoriz. 12, 3137–3146 (2021). https://doi.org/10.1007/s12649-020-01182-3

    Article  Google Scholar 

  29. Vítová, M., Goecke, F., Sigler, K., Řezanka, T.: Lipidomic analysis of the extremophilic red alga Galdieria sulphuraria in response to changes in pH. Algal Res. 13, 218–226 (2016). https://doi.org/10.1016/j.algal.2015.12.005

    Article  Google Scholar 

  30. Johnson, E.M., Kumar, K., Das, D.: Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour. Technol. 166, 541–547 (2014). https://doi.org/10.1016/j.biortech.2014.05.097

    Article  Google Scholar 

  31. Bennett, A., Bogorad, L.: Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58, 419–435 (1973). https://doi.org/10.1083/jcb.58.2.419

    Article  Google Scholar 

  32. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307–313 (1994). https://doi.org/10.1016/S0176-1617(11)81192-2

    Article  Google Scholar 

  33. Liu, Y.-F., Tang, R.-H., Zhang, Q.-X., Shi, J.-Y., Li, X.-M., Liu, Z.-Q., Zhao, W.: Stimulation of cell growth of Tetrahymena pyriformis and Chlamydomonas reinhardtii by trace elements. Biol. Trace Elem. Res. 9, 89–99 (1986). https://doi.org/10.1007/BF02916518

    Article  Google Scholar 

  34. Gong, D., Li, G., Zhang, S., Chen, T.: Effects of external rare earth La~(3+) on growth and physiological property of Arthrospira in alkaline lake of Erdos Plateau. J. Chinese Soc. Rare Earths 29, 504–507 (2011)

    Google Scholar 

  35. Guterman, H., Ben-Yaakov, S., Vonshak, A.: Automatic on-line growth estimation method for outdoor algal biomass production. Biotechnol. Bioeng. 34, 143–152 (1989). https://doi.org/10.1002/bit.260340202

    Article  Google Scholar 

  36. Hu, Q., Kurano, N., Kawachi, M., Iwasaki, I., Miyachi, S.: Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl. Microbiol. Biotechnol. 49, 655–662 (1998). https://doi.org/10.1007/s002530051228

    Article  Google Scholar 

  37. Edmundson, S.J., Huesemann, M.H.: The dark side of algae cultivation: characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp. Algal Res. 12, 470–476 (2015). https://doi.org/10.1016/j.algal.2015.10.012

    Article  Google Scholar 

  38. Torzillo, G., Sacchi, A., Materassi, R., Richmond, A.: Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J. Appl. Phycol. 3, 103–109 (1991). https://doi.org/10.1007/BF00003691

    Article  Google Scholar 

  39. Albertano, P., Ciniglia, C., Pinto, G., Pollio, A.: The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update. Hydrobiologia 433, 137–143 (2000). https://doi.org/10.1023/A:1004031123806

    Article  Google Scholar 

  40. Kuroiwa, T., Nagashima, H., Fukuda, I.: Chloroplast division without DNA synthesis during the life cycle of the unicellular algaCyanidium caldarium M-8 as revealed by quantitative fluorescence microscopy. Protoplasma 149, 120–129 (1989). https://doi.org/10.1007/BF01322984

    Article  Google Scholar 

  41. Kruskopf, M., Flynn, K.J.: Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New. Phytol. 169, 525–536 (2006). https://doi.org/10.1111/j.1469-8137.2005.01601.x

    Article  Google Scholar 

  42. Gorbe, E., Calatayud, A.: Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Sci. Hortic. 138, 24–35 (2012). https://doi.org/10.1016/j.scienta.2012.02.002

    Article  Google Scholar 

  43. Hu, H., Wang, L., Li, Y., Sun, J., Zhou, Q., Huang, X.: Insight into mechanism of lanthanum (III) induced damage to plant photosynthesis. Ecotoxicol. Environ. Saf. 127, 43–50 (2016). https://doi.org/10.1016/j.ecoenv.2016.01.008

    Article  Google Scholar 

  44. Potijun, S., Jaingam, S., Sanevas, N., Vajrodaya, S., Sirikhachornkit, A.: Green microalgae strain improvement for the production of sterols and squalene. Plants 10, 1673 (2021). https://doi.org/10.3390/plants10081673

    Article  Google Scholar 

  45. Fu, H.-Y., Liu, S.-L., Chiang, Y.-R.: Biosynthesis of ascorbic acid as a glucose-induced photoprotective process in the extremophilic red alga Galdieria partita. Front. Microbiol. 10, 3005 (2020). https://doi.org/10.3389/fmicb.2019.03005

    Article  Google Scholar 

  46. Torzillo, G., Accolla, P., Pinzani, E., Masojidek, J.: In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J. Appl. Phycol. 8, 283–291 (1996). https://doi.org/10.1007/BF02178571

    Article  Google Scholar 

  47. Iovinella, M., Carbone, D.A., Cioppa, D., Davis, S.J., Innangi, M., Esposito, S., Ciniglia, C.: Prevalent pH controls the capacity of Galdieria maxima to use ammonia and nitrate as a nitrogen source. Plants 9, 232 (2020). https://doi.org/10.3390/plants9020232

    Article  Google Scholar 

  48. Tomaškin, J., Tomaškinová, J., Theuma, H.: Chlorophyll fluorescence as a criterion for the diagnosis of abiotic environmental stress of Miscanthus x Giganteus hybrid. Pol. J. Environ. Stud. (2021). https://doi.org/10.15244/pjoes/126874

    Article  Google Scholar 

  49. Foflonker, F., Ananyev, G., Qiu, H., Morrison, A., Palenik, B., Dismukes, G.C., Bhattacharya, D.: The unexpected extremophile: tolerance to fluctuating salinity in the green alga Picochlorum. Algal. Res. 16, 465–472 (2016). https://doi.org/10.1016/j.algal.2016.04.003

    Article  Google Scholar 

  50. Chen, W.-J., Tao, Y., Gu, Y.-H., Zhao, G.-W.: Effect of lanthanide chloride on photosynthesis and dry matter accumulation in tobacco seedlings. Biol. Trace Elem. Res. 79, 169–176 (2001). https://doi.org/10.1385/BTER:79:2:169

    Article  Google Scholar 

  51. Song, K., Gao, J., Li, S., Sun, Y., Sun, H., An, B., Hu, T., He, X.: Experimental and theoretical study of the effects of rare earth elements on growth and chlorophyll of Alfalfa (Medicago sativa L.) seedling. Front. Plant Sci. (2021). https://doi.org/10.3389/fpls.2021.731838

    Article  Google Scholar 

  52. Küpper, H., Küpper, F.C., Spiller, M.: [Heavy metal]-chlorophylls formed in vivo during heavy metal stress and degradation products formed during digestion, extraction and storage of plant material. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds.) Chlorophylls and bacteriochlorophylls, pp. 67–77. Springer, Dordrecht (2006)

    Chapter  Google Scholar 

  53. Sun, D., He, N., Chen, Q., Duan, S.: Effects of lanthanum on the photosystem II energy fluxes and antioxidant system of Chlorella vulgaris and Phaeodactylum tricornutum. Int. J. Environ. Res. 16, 2242 (2019). https://doi.org/10.3390/ijerph16122242

    Article  Google Scholar 

  54. Andresen, E., Kappel, S., Stärk, H.J., Riegger, U., Borovec, J., Mattusch, J., Heinz, A., Schmelzer, C.E., Matoušková, Š, Dickinson, B.: Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum. New Phytol. 210, 1244–1258 (2016). https://doi.org/10.1111/nph.13840

    Article  Google Scholar 

  55. Tao, Y., Shen, L., Feng, C., Qu, J., Ju, H., Yang, R., Zhang, Y.: Distribution of rare earth elements (REEs) and their roles in plants growth: A review. Environ. Pollut. (2021). https://doi.org/10.1016/j.envpol.2021.118540

    Article  Google Scholar 

  56. Santomauro, G., Singh, A.V., Park, B.-W., Mohammadrahimi, M., Erkoc, P., Goering, E., Shuetz, G., Sitti, M., Bill, J.: Incorporation of terbium itno a micralga leads to magnetotactic swimmers. Adv. Biosys. 2, 1800039 (2018). https://doi.org/10.1002/adbi.201800039

    Article  Google Scholar 

  57. González, V., Vignati, D.A., Pons, M.-N., Montarges-Pelletier, E., Bojic, C., Giamberini, L.: Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms. Environ. Pollut. 199, 139–147 (2015). https://doi.org/10.1016/j.envpol.2015.01.020

    Article  Google Scholar 

  58. Yang, G., Wilkinson, K.J.: Biouptake of a rare earth metal (Nd) by Chlamydomonas reinhardtii–Bioavailability of small organic complexes and role of hardness ions. Environ. Pollut. 243, 263–269 (2018). https://doi.org/10.1016/j.envpol.2018.08.066

    Article  Google Scholar 

  59. Youxian, Y., Fuyan, X.: Enhancement of 3 rare earth elements to Isochrysis galbana. J. Fish. Sci. China 5, 42–47 (1998)

    Google Scholar 

  60. Ishii, N., Tagami, K., Uchida, S.: Removal of rare earth elements by algal flagellate Euglena gracilis. J. Alloys Compd. 408, 417–420 (2006). https://doi.org/10.1016/j.jallcom.2004.12.105

    Article  Google Scholar 

  61. López, G., Yate, C., Ramos, F.A., Cala, M.P., Restrepo, S., Baena, S.: Production of polyunsaturated fatty acids and lipids from autotrophic, mixotrophic and heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832. Sci. Rep. 9, 1–13 (2019). https://doi.org/10.1038/s41598-019-46645-3

    Article  Google Scholar 

  62. Liu, L., Sanchez-Arcos, C., Pohnert, G., Wei, D.: Untargeted metabolomics unveil changes in autotrophic and mixotrophic Galdieria sulphuraria exposed to high-light intensity. Int. J. Mol. Sci. 22, 1247 (2021). https://doi.org/10.3390/ijms22031247

    Article  Google Scholar 

  63. Horsfall, M., Jr., Spiff, A.I.: Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. E. J. Biotechnol. 8(2), 43–50 (2005)

    Google Scholar 

  64. Oliveira, R.C., Palmieri, M.C., Garcia, O., Jr.: Biosorption of metals: State of the art, general features, and potential applications for environmental and technological processes. In: Shaukat, S. (ed.) Progress in Biomass and Bioenergy Production, pp. 151–177. IntechOpen Ltd., London, UK (2011)

    Google Scholar 

  65. Chojnacka, K.: Biosorption and bioaccumulation – the prospects for practical applications. Env. International 36, 299–307 (2010)

    Article  Google Scholar 

  66. Dwivedi, S.: Bioremediation of heavy metal by algae: Current and future perspective. J. Adv. Lab. Res. Biol. 3, 195–199 (2012)

    Google Scholar 

Download references

Acknowledgements

We acknowledge Mgr. Barbora Šedivá for confocal imaging, Dr. Balázs Kovács for red mud samples and prof. J. D. Brooker for critical reading and language editing of the text. We are obliged to our lifelong mentor Dr. Vilém Zachleder in memoriam, who trusted in us and in Galdieria.

Funding

This research was funded by the European fund for regional development, the program Interreg V-A Austria – Czech Republic, grant number ATCZ172 REEgain, with the institutional support RVO 61388971, the COST Action 19116 – PLANTMETALS and grant of Ministry of Education, Youth and Sports KOROLID CZ.02.1.01/0.0/0.0/15_003/0000336. European fund for regional deveolopment,ATCZ172 REEgain,Dana Mezricky,COST,COST Action 19116,Milada Vítová,Ministerstvo Školství,Mládeže a Tělovýchovy,CZ.02.1.01/0.0/0.0/15_003/0000336,Elisa Andresen

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MV and DM; methodology, MČ, VN; validation, DM; formal analysis, MR.; investigation, VN, MČ and AS; resources, AS; data curation, MV, DM; writing—original draft preparation, VN, MČ, AS and EA; writing—review and editing, MV, EA. and DM; visualization, MV and EA; supervision, MV; project administration, MV; funding acquisition, MV, EA and DM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Milada Vítová.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Náhlík, V., Čížková, M., Singh, A. et al. Growth of the Red Alga Galdieria sulphuraria in Red Mud-Containing Medium and Accumulation of Rare Earth Elements. Waste Biomass Valor 14, 2179–2189 (2023). https://doi.org/10.1007/s12649-022-02021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-02021-3

Keywords

Navigation