Skip to main content

Advertisement

Log in

Towards the Production of High Added-Value Products from the Pyrolysis and Steam Pyro-Gasification of Five Biomass-Based Building Insulation Materials at End-of-Life

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Pyrolysis and gasification are two promising thermochemical conversion processes to transform biomass feedstocks into valuable fuels. Pyrolysis leads to the generation of biochar, tar (or bio-oil), and permanent gas while gasification produces mainly a syngas. This study explores the slow pyrolysis (550 °C) and steam pyro-gasification (850 °C), in a semi-rotating reactor, of five biomass-based insulation materials namely: cellulose wadding (CW) and panels consisting of textile, hemp, wood, and mixed fibers, after their characterization. Subsequently, the properties of the gaseous, solid and liquid products were investigated and their potential application was proposed. The pyrolysis bio-oils derived from hemp, mixed and wood fibers have low energy content (18.6–20.94 MJ/kg), high oxygen content (43.45–47.99 wt.%) and high viscosity (149–494 mPa.s), requiring further upgrading to transportation fuels. Biochars showed a high carbon content (65–85 wt.%), high heating value (20–32 MJ/kg) and a low specific surface area (0–18 m2/g), making them suitable for use as solid fuels. The only exception was textile biochar which revealed the highest surface area of 375 m2/g and a microporous structure (66%), hence its use as an adsorbent was recommended. The steam pyro-gasification generated hydrogen-rich syngas (around 50 mol.% H2) with medium calorific value (13–18 MJ/Nm3). The CW syngas presented a H2/CO ratio of 2.8, which favors its valorization via Fischer–Tropsch processes (diesel fuels). Boron was concentrated in CW pyro-gasification ash. Consequently, pyrolysis was favored for textile panels for microporous biochar formation and hemp/wood/mixed panels for bio-oil production; while gasification was privileged to CW for syngas production and boron recovery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets that support the findings of this study are available from the authors upon reasonable request.

References

  1. European Commission: Energy performance of buildings directive. https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en, (2019)

  2. Lecompte, T.: Matériaux bio-sourcés pour le bâtiment et stockage temporaire de carbone. 37 (2019)

  3. Liu, L., Li, H., Lazzaretto, A., Manente, G., Tong, C., Liu, Q., Li, N.: The development history and prospects of biomass-based insulation materials for buildings. Renew. Sustain. Energy Rev. 69, 912–932 (2017). https://doi.org/10.1016/j.rser.2016.11.140

    Article  Google Scholar 

  4. Cetiner, I., Shea, A.D.: Wood waste as an alternative thermal insulation for buildings. Energy Build. 168, 374–384 (2018). https://doi.org/10.1016/j.enbuild.2018.03.019

    Article  Google Scholar 

  5. Nyers, J., Kajtar, L., Tomić, S., Nyers, A.: Investment-savings method for energy-economic optimization of external wall thermal insulation thickness. Energy Build. 86, 268–274 (2015). https://doi.org/10.1016/j.enbuild.2014.10.023

    Article  Google Scholar 

  6. Lechtenböhmer, S., Schüring, A.: The potential for large-scale savings from insulating residential buildings in the EU. Energy Effic. 4, 257–270 (2011). https://doi.org/10.1007/s12053-010-9090-6

    Article  Google Scholar 

  7. Jelle, B.P.: Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build. 43, 2549–2563 (2011). https://doi.org/10.1016/j.enbuild.2011.05.015

    Article  Google Scholar 

  8. Abu-Jdayil, B., Mourad, A.-H., Hittini, W., Hassan, M., Hameedi, S.: Traditional, state-of-the-art and renewable thermal building insulation materials: an overview. Constr. Build. Mater. 214, 709–735 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.102

    Article  Google Scholar 

  9. Breton, C., Blanchet, P., Amor, B., Beauregard, R., Chang, W.-S.: Assessing the climate change impacts of biogenic carbon in buildings: a critical review of two main dynamic approaches. Sustainability. 10, 2020 (2018). https://doi.org/10.3390/su10062020

    Article  Google Scholar 

  10. Gustavsson, L., Haus, S., Lundblad, M., Lundström, A., Ortiz, C.A., Sathre, R., Truong, N.L., Wikberg, P.-E.: Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renew. Sustain. Energy Rev. 67, 612–624 (2017). https://doi.org/10.1016/j.rser.2016.09.056

    Article  Google Scholar 

  11. Pavel, C.C., Blagoeva, D.T.: Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings, revised, p. 24. Publications Office of the European Union, Luxembourg (2018)

    Google Scholar 

  12. Asdrubali, F., D’Alessandro, F., Schiavoni, S.: A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4, 1–17 (2015). https://doi.org/10.1016/j.susmat.2015.05.002

    Article  Google Scholar 

  13. Schiavoni, S., D’Alessandro, F., Bianchi, F., Asdrubali, F.: Insulation materials for the building sector: a review and comparative analysis. Renew. Sustain. Energy Rev. 62, 988–1011 (2016). https://doi.org/10.1016/j.rser.2016.05.045

    Article  Google Scholar 

  14. Dutreix, N., Baecher, C., Pianu, B., Marx, I., Habasque, M., Bou Cherifi, F., Trannoy, L.: Etude sur le secteur et les filières de production des matériaux et produits biosourcés utilisés dans la construction (à l’exception du bois). Nomadéis, Paris (2017)

    Google Scholar 

  15. Colombel, R.: Forte croissance du marché des isolants biosourcés. https://www.batiweb.com/actualites/vie-des-societes/www.batiweb.com

  16. Joreau, O.: Les isolants biosourcés doubleront leurs capacités de production d’ici 2025 (2021). https://www.batiradio.com/podcasts/megatrends/metiers/les-isolants-biosources-doubleront-leurs-capacites-de-production-dici-2025/

  17. Floissac, L.: MATÉRIAUX BIOSOURCÉS : RESSOURCES ET USAGES D’ICI 2050 Modélisations: principes et résultats. Terracrea. 32 (2010)

  18. Rabbat, C., Awad, S., Villot, A., Rollet, D., Andrès, Y.: Sustainability of biomass-based insulation materials in buildings: current status in France, end-of-life projections and energy recovery potentials. Renew. Sustain. Energy Rev. 156, 111962 (2022). https://doi.org/10.1016/j.rser.2021.111962

    Article  Google Scholar 

  19. Amziane, S.: Overview on bio-based building material made with plant aggregate. RILEM Tech. Lett. 9 (2016)

  20. Salami, A., Heikkinen, J., Tomppo, L., Hyttinen, M., Kekäläinen, T., Jänis, J., Vepsäläinen, J., Lappalainen, R.: A comparative study of pyrolysis liquids by slow pyrolysis of industrial hemp leaves hurds and roots. Mol. Basel Switz. 26, 3167 (2021). https://doi.org/10.3390/molecules26113167

    Article  Google Scholar 

  21. Ronsse, F., van Hecke, S., Dickinson, D., Prins, W.: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy. 5, 104–115 (2013). https://doi.org/10.1111/gcbb.12018

    Article  Google Scholar 

  22. Manyà, J.J., Azuara, M., Manso, J.A.: Biochar production through slow pyrolysis of different biomass materials: seeking the best operating conditions. Biomass Bioenergy. 117, 115–123 (2018). https://doi.org/10.1016/j.biombioe.2018.07.019

    Article  Google Scholar 

  23. Bhardwaj, G., Kumar, M., Mishra, P.K., Upadhyay, S.N.: Kinetic analysis of the slow pyrolysis of paper wastes. Biomass Convers. Biorefinery. (2021). https://doi.org/10.1007/s13399-021-01363-7

    Article  Google Scholar 

  24. Chowdhury, R., Sarkar, A.: Reaction kinetics and product distribution of slow pyrolysis of Indian textile wastes. Int. J. Chem. React. Eng. (2012). https://doi.org/10.1515/1542-6580.2662

    Article  Google Scholar 

  25. Ahmed, I., Gupta, A.K.: Syngas yield during pyrolysis and steam gasification of paper. Appl. Energy. 86, 1813–1821 (2009). https://doi.org/10.1016/j.apenergy.2009.01.025

    Article  Google Scholar 

  26. Dong, J., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., Lyczko, N., Tang, Y., Ducousso, M.: Hydrogen-rich gas production from steam gasification of bio-char in the presence of CaO. Waste Biomass Valorization. 8, 2735–2746 (2017). https://doi.org/10.1007/s12649-016-9784-x

    Article  Google Scholar 

  27. González-Vázquez, M.P., García, R., Gil, M.V., Pevida, C., Rubiera, F.: Unconventional biomass fuels for steam gasification: kinetic analysis and effect of ash composition on reactivity. Energy 155, 426–437 (2018). https://doi.org/10.1016/j.energy.2018.04.188

    Article  Google Scholar 

  28. Pfeifer, C., Koppatz, S., Hofbauer, H.: Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Convers. Biorefinery. 1, 39–53 (2011). https://doi.org/10.1007/s13399-011-0007-1

    Article  Google Scholar 

  29. Yasin, S., Curti, M., Rovero, G., Hussain, M., Sun, D.: Spouted-bed gasification of flame retardant textiles as a potential non-conventional biomass: a preparatory study. Appl. Sci. 10, 946 (2020). https://doi.org/10.3390/app10030946

    Article  Google Scholar 

  30. Wen, C., Wu, Y., Chen, X., Jiang, G., Liu, D.: The pyrolysis and gasification performances of waste textile under carbon dioxide atmosphere. J. Therm. Anal. Calorim. 128, 581–591 (2017). https://doi.org/10.1007/s10973-016-5887-7

    Article  Google Scholar 

  31. Di Blasi, C., Branca, C., Galgano, A.: Flame retarding of wood by impregnation with boric acid—pyrolysis products and char oxidation rates. Polym. Degrad. Stab. 92, 752–764 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.02.007

    Article  Google Scholar 

  32. Cheng, X., Wang, B.: Yield, composition, and property of biochar obtained from the two-step pyrolysis of rice husk impregnated with boric acid. Energies 10, 1814 (2017). https://doi.org/10.3390/en10111814

    Article  Google Scholar 

  33. Li, H., Ma, X.-X., Gu, Z.-C., Wang, X., Li, J.-Z., Jiang, J., Fei, H., Yang, Z.-B.: Pyrolysis and combustion characteristics of boric acid and borax treated decorative bamboo filaments. BioResources 15, 8146–8160 (2020)

    Article  Google Scholar 

  34. Zhang, Y., Mu, J., Li, S., Zhao, Y.: The effect of boric acid-borax on the pyrolysis characteristics of poplar oriented strand board. Beijing Linye Daxue Xuebao J. Beijing For. Univ. 37, 127–133 (2015). https://doi.org/10.13332/j.cnki.jbfu.2015.01.003

    Article  Google Scholar 

  35. Xu, J.Z., Gao, M., Guo, H.Z., Liu, X.L., Li, Z., Wang, H., Tian, C.M.: Study on the thermal degradation of cellulosic fibers treated with flame retardants. J. Fire Sci. 20, 227–235 (2002). https://doi.org/10.1177/0734904102020003905

    Article  Google Scholar 

  36. Kinata, S.E., Loubar, K., Pataschiv, M., Bouslamti, A., Belloncle, C., Tazerout, M.: Slow pyrolysis of CCB-treated wood for energy recovery: Influence of chromium, copper and boron on pyrolysis process and optimization. J. Anal. Appl. Pyrolysis. 104, 210–217 (2013). https://doi.org/10.1016/j.jaap.2013.08.002

    Article  Google Scholar 

  37. Wang, Q., Li, J., Winandy, J.E.: Chemical mechanism of fire retardance of boric acid on wood. Wood Sci. Technol. (2004). https://doi.org/10.1007/s00226-004-0246-4

    Article  Google Scholar 

  38. Maniscalco, M., La Paglia, F., Iannotta, P., Caputo, G., Scargiali, F., Grisafi, F., Brucato, A.: Slow pyrolysis of an LDPE/PP mixture: kinetics and process performance. J. Energy Inst. 96, 234–241 (2021). https://doi.org/10.1016/j.joei.2021.03.006

    Article  Google Scholar 

  39. Zhong, M., Chen, S., Wang, T., Liu, J., Mei, M., Li, J.: Co-pyrolysis of polyester and cotton via thermogravimetric analysis and adsorption mechanism of Cr(VI) removal by carbon in aqueous solution. J. Mol. Liq. 354, 118902 (2022). https://doi.org/10.1016/j.molliq.2022.118902

    Article  Google Scholar 

  40. Vo, T.A., Tran, Q.K., Ly, H.V., Kwon, B., Hwang, H.T., Kim, J., Kim, S.-S.: Co-pyrolysis of lignocellulosic biomass and plastics: a comprehensive study on pyrolysis kinetics and characteristics. J. Anal. Appl. Pyrolysis. 163, 105464 (2022). https://doi.org/10.1016/j.jaap.2022.105464

    Article  Google Scholar 

  41. Fekhar, B., Zsinka, V., Miskolczi, N.: Thermo-catalytic co-pyrolysis of waste plastic and paper in batch and tubular reactors for in-situ product improvement. J. Environ. Manage. 269, 110741 (2020). https://doi.org/10.1016/j.jenvman.2020.110741

    Article  Google Scholar 

  42. Terry, L.M., Li, C., Chew, J.J., Aqsha, A., How, B.S., Loy, A.C.M., Chin, B.L.F., Khaerudini, D.S., Hameed, N., Guan, G., Sunarso, J.: Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: a review. Carbon Resour. Convers. 4, 239–250 (2021). https://doi.org/10.1016/j.crcon.2021.10.002

    Article  Google Scholar 

  43. Simanungkalit, S.P., Mansur, D., Fitriady, M.A.: Effect of plastic blends on slow pyrolysis of oil palm empty fruit bunch. AIP Conf. Proc. 2024, 020003 (2018). https://doi.org/10.1063/1.5064289

    Article  Google Scholar 

  44. Kusrini, E., Supramono, D., Degirmenci, V., Pranata, S., Bawono, A.A., Ani, N.: Improving the quality of pyrolysis oil from co-firing high-density polyethylene plastic waste and palm empty fruit bunches. Int. J. Technol. 9, 1498 (2018). https://doi.org/10.14716/ijtech.v9i7.2531

    Article  Google Scholar 

  45. Chetehouna, K., Belayachi, N., Lemée, L., Hoxha, D., Rengel, B.: Pyrolysis gases released during the thermal degradation of insulation materials based on straw fibers. J. Therm. Anal. Calorim. 122, 1417–1422 (2015). https://doi.org/10.1007/s10973-015-4584-2

    Article  Google Scholar 

  46. Duboc, O., Steiner, K., Radosits, F., Wenzel, W.W., Goessler, W., Santner, J.: Functional recycling of biobased, borate-stabilized insulation materials as B fertilizer. Environ. Sci. Technol. 53, 14620–14629 (2019). https://doi.org/10.1021/acs.est.9b04234

    Article  Google Scholar 

  47. Mu, J., Lai, Z.Y.: Pyrolysis Characteristics of wood-based panels and its products. Presented at the July 5 (2017)

  48. ISO 18122:2015—Solid biofuels—Determination of ash content.

  49. D07 Committee: ASTM D1762–84—test method for chemical analysis of wood charcoal. ASTM International (2021)

  50. D02 Committee: ASTM D482–19—Test method for ash from petroleum products. ASTM International

  51. Wallace, J.M., Hobbs, P.V.: 3—atmospheric thermodynamics. In: Wallace, J.M., Hobbs, P.V. (eds.) Atmospheric science (2nd ed.), pp. 63–111. Academic Press, San Diego (2006)

    Chapter  Google Scholar 

  52. Vargun, E., Baysal, E., Turkoglu, T., Yuksel, M., Toker, H., Vargun, E., Baysal, E., Turkoglu, T., Yuksel, M., Toker, H.: Thermal degradation of oriental beech wood impregnated with different inorganic salts. Maderas Cienc. Tecnol. 21, 163–170 (2019). https://doi.org/10.4067/S0718-221X2019005000204

    Article  Google Scholar 

  53. ISO 18123:2015—solid biofuels—determination of the content of volatile matter.

  54. Pena, J., Villot, A., Gerente, C.: Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas. Biomass Bioenergy. 132, 105435 (2020). https://doi.org/10.1016/j.biombioe.2019.105435

    Article  Google Scholar 

  55. D02 Committee: ASTM D445–21—test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). ASTM International

  56. ISO 9277:2010—Determination of the specific surface area of solids by gas adsorption—BET method. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/49/44941.html

  57. Lopez Hurtado, P., Rouilly, A., Vandenbossche, V., Raynaud, C.: A review on the properties of cellulose fibre insulation. Build. Environ. 96, 170–177 (2016). https://doi.org/10.1016/j.buildenv.2015.09.031

    Article  Google Scholar 

  58. Ansah, E., Wang, L., Shahbazi, G.: Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Manag. (2016). https://doi.org/10.1016/j.wasman.2016.06.015

    Article  Google Scholar 

  59. Naghavi, R., Abdoli, M., Karbassi, A.R., Adl, M.: Improving the quantity and quality of biogas production in tehran anaerobic digestion power plant by application of materials recirculation technique. Int. J. Renew. Energy Dev. 9, 167–175 (2020). https://doi.org/10.14710/ijred.9.2.167-175

    Article  Google Scholar 

  60. Kim, D., Prawisudha, P., Yoshikawa, K.: Hydrothermal upgrading of Korean MSW for solid fuel production: effect of MSW composition. Presented at the March 16 (2017)

  61. Fan, J., Matharu, A., Zhang, Z., Macquarrie, D., Clark, J., Hunt, A., Shuttleworth, P., Gronnow, M., De Bruyn, M., Budarin, V.: Low-temperature microwave-assisted pyrolysis of waste office paper and the application of bio-oil as an Al adhesive. Green Chem. 17, 260–270 (2014). https://doi.org/10.1039/C4GC00768A

    Article  Google Scholar 

  62. Tihay, V., Boulnois, C., Gillard, P.: Influence of oxygen concentration on the kinetics of cellulose wadding degradation. Thermochim. Acta. 525, 16–24 (2011). https://doi.org/10.1016/j.tca.2011.07.016

    Article  Google Scholar 

  63. Choudhary, A., Sheena, B.: Influences of elastane content, aesthetic finishes and fabric weight on mechanical and comfort properties of denim fabrics. J. Text. Eng. Fash. Technol. (2018). https://doi.org/10.15406/jteft.2018.04.00119

    Article  Google Scholar 

  64. Otaigbes, J.U., Madbouly, A.: 11—the processing, structure and properties of elastomeric fibers. In: Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T. (eds.) Handbook of textile fibre structure, pp. 325–351. Woodhead Publishing (2009)

    Chapter  Google Scholar 

  65. LaRance, D.: The chemistry of denim. https://www.chemistryislife.com/the-chemistry-of-denim

  66. van der Velden, N.M., Patel, M.K., Vogtländer, J.G.: LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. Int. J. Life Cycle Assess. 19, 331–356 (2014). https://doi.org/10.1007/s11367-013-0626-9

    Article  Google Scholar 

  67. Akı, S.U., Candan, C., Nergis, B., Önder, N.S.: Understanding denim recycling: a quantitative study with lifecycle assessment methodology. IntechOpen (2020)

    Google Scholar 

  68. Arenales Rivera, J., Pérez López, V., Ramos Casado, R., Sánchez Hervás, J.-M.: Thermal degradation of paper industry wastes from a recovered paper mill using TGA: characterization and gasification test. Waste Manag. 47, 225–235 (2016). https://doi.org/10.1016/j.wasman.2015.04.031

    Article  Google Scholar 

  69. Singh, Y.D., Mahanta, P., Bora, U.: Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy. 103, 490–500 (2017). https://doi.org/10.1016/j.renene.2016.11.039

    Article  Google Scholar 

  70. McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46 (2002). https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  Google Scholar 

  71. Dorez, G., Ferry, L., Sonnier, R., Taguet, A., Lopez-Cuesta, J.-M.: Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrolysis. 107, 323–331 (2014). https://doi.org/10.1016/j.jaap.2014.03.017

    Article  Google Scholar 

  72. Liu, M., Thygesen, A., Summerscales, J., Meyer, A.: Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: a review. Ind. Crops Prod. 108, 660–683 (2017). https://doi.org/10.1016/j.indcrop.2017.07.027

    Article  Google Scholar 

  73. Prasad, S., Singh, A., Joshi, H.C.: Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50, 1–39 (2007). https://doi.org/10.1016/j.resconrec.2006.05.007

    Article  Google Scholar 

  74. Hu, G., Fu, S., Liumaki, H.: Hemicellulose in pulp affects paper properties and printability. Appita Technol. Innov. Manuf. Environ. (2013)

  75. Salmeia, K.A., Jovic, M., Ragaisiene, A., Rukuiziene, Z., Milasius, R., Mikucioniene, D., Gaan, S.: Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers 8, E293 (2016). https://doi.org/10.3390/polym8080293

    Article  Google Scholar 

  76. Domingos, I., Ayata, U., Ferreira, J., Cruz-Lopes, L., Sen, A., Sahin, S., Esteves, B.: Calorific power improvement of wood by heat treatment and its relation to chemical composition. Energies 13, 5322 (2020). https://doi.org/10.3390/en13205322

    Article  Google Scholar 

  77. Princi, E., Vicini, S., Marsano, E., Trefiletti, V.: Influence of the artificial weathering on thermal stability of paper-based materials. Thermochim. Acta. 468, 27–34 (2008). https://doi.org/10.1016/j.tca.2007.11.019

    Article  Google Scholar 

  78. Pedieu, R., Koubaa, A., Riedl, B., Wang, X.-M., Deng, J.: Fire-retardant properties of wood particleboards treated with boric acid. Eur. J. Wood Wood Prod. 70, 191–197 (2012). https://doi.org/10.1007/s00107-011-0538-y

    Article  Google Scholar 

  79. Zigo, J., Rantuch, P., Balog, K.: Thermal decomposition of loose-fill cellulose thermal insulation. Adv. Mater. Res. 1001, 379–382 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1001.379

    Article  Google Scholar 

  80. Zhang, J., Koubaa, A., Xing, D., Wang, H., Wang, Y., Liu, W., Zhang, Z., Wang, X., Wang, Q.: Conversion of lignocellulose into biochar and furfural through boron complexation and esterification reactions. Bioresour. Technol. 312, 123586 (2020). https://doi.org/10.1016/j.biortech.2020.123586

    Article  Google Scholar 

  81. Uddin, K.M.A., Ago, M., Rojas, O.J.: Hybrid films of chitosan, cellulose nanofibrils and boric acid: flame retardancy, optical and thermo-mechanical properties. Carbohydr. Polym. 177, 13–21 (2017). https://doi.org/10.1016/j.carbpol.2017.08.116

    Article  Google Scholar 

  82. Wicklein, B., Kocjan, D., Carosio, F., Camino, G., Bergström, L.: Tuning the nanocellulose-borate interaction to achieve highly flame retardant hybrid materials. Chem. Mater. 28, 1985–1989 (2016). https://doi.org/10.1021/acs.chemmater.6b00564

    Article  Google Scholar 

  83. Zhang, J., Koubaa, A., Xing, D., Liu, W., Wang, Q., Wang, X., Wang, H.: Improving lignocellulose thermal stability by chemical modification with boric acid for incorporating into polyamide. Mater. Des. 191, 108589 (2020). https://doi.org/10.1016/j.matdes.2020.108589

    Article  Google Scholar 

  84. Fei, C.U.I., Long, Y.A.N.: Flame retardancy and pyrolysis kinetics of Pinus yunnanensis flame-retarded synergically by NH4H2PO4 and borax. China Saf. Sci. J. 28, 38 (2018). https://doi.org/10.16265/j.cnki.issn1003-3033.2018.07.007

    Article  Google Scholar 

  85. Balcı, S., Sezgi, N.A., Eren, E.: Boron oxide production kinetics using boric acid as raw material. Ind. Eng. Chem. Res. 51, 11091–11096 (2012). https://doi.org/10.1021/ie300685x

    Article  Google Scholar 

  86. Oudiani, A.E., Chaabouni, Y., Msahli, S., Sakli, F.: Crystal transition from cellulose I to cellulose II in NaOH treated Agave Americana L fibre. Carbohydr. Polym. 86, 1221–1229 (2011). https://doi.org/10.1016/j.carbpol.2011.06.037

    Article  Google Scholar 

  87. Kolpak, F.J., Blackwell, J.: Determination of the structure of cellulose II. Macromolecules 9, 273–278 (1976). https://doi.org/10.1021/ma60050a019

    Article  Google Scholar 

  88. Méndez, A., Fidalgo, J.M., Guerrero, F., Gascó, G.: Characterization and pyrolysis behaviour of different paper mill waste materials. J. Anal. Appl. Pyrolysis. 86, 66–73 (2009). https://doi.org/10.1016/j.jaap.2009.04.004

    Article  Google Scholar 

  89. Rantuch, P., Chrebet, T.: Thermal decomposition of cellulose insulation. Cellul. Chem. Technol. 48, 461–467 (2014)

    Google Scholar 

  90. Capart, R., Khezami, L., Burnham, A.K.: Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim. Acta. 417, 79–89 (2004). https://doi.org/10.1016/j.tca.2004.01.029

    Article  Google Scholar 

  91. Mamleev, V., Bourbigot, S., Yvon, J.: Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J. Anal. Appl. Pyrolysis. 80, 151–165 (2007). https://doi.org/10.1016/j.jaap.2007.01.013

    Article  Google Scholar 

  92. Rychlý, J., Strlič, M., Matisová-Rychlá, L., Kolar, J.: Chemiluminescence from paper I: kinetic analysis of thermal oxidation of cellulose. Polym. Degrad. Stab. 78, 357–367 (2002). https://doi.org/10.1016/S0141-3910(02)00187-8

    Article  Google Scholar 

  93. Thi, V.V.D.: Matériaux composites à fibres naturelles/polymère biodégradables ou non (2011). https://tel.archives-ouvertes.fr/tel-00652477

  94. Magovac, E., Vončina, B., Jordanov, I., Grunlan, J.C., Bischof, S.: Layer-by-layer deposition: a promising environmentally benign flame-retardant treatment for cotton, polyester, polyamide and blended textiles. Materials. 15, 432 (2022). https://doi.org/10.3390/ma15020432

    Article  Google Scholar 

  95. Zhu, P., Sui, S., Wang, B., Sun, K., Sun, G.: A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY–GC–MS. J. Anal. Appl. Pyrolysis. 71, 645–655 (2004). https://doi.org/10.1016/j.jaap.2003.09.005

    Article  Google Scholar 

  96. Muralidhara, K.S., Sreenivasan, S.: Thermal degradation kinetic data of polyester, cotton and polyester-cotton blended textile material. 6 (2010)

  97. Manich, A., Pérez-Rentero, S., Alonso, C., Coderch, L., Martí, M.: Thermal analysis of healthy and ecological friendly flame retardants for textiles. KnE Eng. (2020). https://doi.org/10.18502/keg.v5i6.7028

    Article  Google Scholar 

  98. Singh, R.K., Ruj, B., Sadhukhan, A.K., Gupta, P.: Thermal degradation of waste plastics under non-sweeping atmosphere: part 1: effect of temperature, product optimization, and degradation mechanism. J. Environ. Manage. 239, 395–406 (2019). https://doi.org/10.1016/j.jenvman.2019.03.067

    Article  Google Scholar 

  99. Das, P., Tiwari, P.: Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments. Thermochim. Acta. 679, 178340 (2019). https://doi.org/10.1016/j.tca.2019.178340

    Article  Google Scholar 

  100. Monahan, A.R.: Thermal degradation of polyacrylonitrile in the temperature range 280–450°c. J. Polym. Sci. [A1] 4, 2391–2399 (1966). https://doi.org/10.1002/pol.1966.150041005

    Article  Google Scholar 

  101. Lin, Y., Yu, B., Jin, X., Song, L., Hu, Y.: Study on thermal degradation and combustion behavior of flame retardant unsaturated polyester resin modified with a reactive phosphorus containing monomer. RSC Adv. 6, 49633–49642 (2016). https://doi.org/10.1039/C6RA06544A

    Article  Google Scholar 

  102. Tomaszewska, K., Kałużna-Czaplińska, J., Jóźwiak, W.: Thermal and thermo-catalytic degradation of polyolefins as a simple and efficient method of landfill clearing. Pol. J. Chem. Technol. (2010). https://doi.org/10.2478/v10026-010-0034-x

    Article  Google Scholar 

  103. Slopiecka, K., Bartocci, P., Fantozzi, F.: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy. 97, 491–497 (2012). https://doi.org/10.1016/j.apenergy.2011.12.056

    Article  Google Scholar 

  104. Mofokeng, J., Luyt, A., Tábi, T., Kovacs, J.: Comparison of injection moulded, natural fibre reinforced composites with PP and PLA as matrices. J. Thermoplast. Compos. Mater. 25, 927–948 (2012). https://doi.org/10.1177/0892705711423291

    Article  Google Scholar 

  105. Jia, H., Ben, H., Luo, Y., Wang, R.: Catalytic fast pyrolysis of poly (ethylene terephthalate) (PET) with zeolite and nickel chloride. Polymers 12, 705 (2020). https://doi.org/10.3390/polym12030705

    Article  Google Scholar 

  106. Mukhambet, Y., Shah, D., Tatkeyeva, G., Sarbassov, Y.: Slow pyrolysis of flax straw biomass produced in Kazakhstan: Characterization of enhanced tar and high-quality biochar. Fuel 324, 124676 (2022). https://doi.org/10.1016/j.fuel.2022.124676

    Article  Google Scholar 

  107. Yunchu, H., Peijang, Z., Songsheng, Q.: TG-DTA studies on wood treated with flame-retardants. Holz Als Roh- Werkst. 58, 35–38 (2000). https://doi.org/10.1007/s001070050382

    Article  Google Scholar 

  108. Tang, W., Neill, W.: Effect of flame retardants on pyrolysis and combustion of cellulose. J. Polym. Sci. C Polym. Symp. 6, 65–81 (2007). https://doi.org/10.1002/polc.5070060109

    Article  Google Scholar 

  109. Wang, H., Guo, S., Zhang, C., Qi, Z., Li, L., Zhu, P.: Flame retardancy and thermal behavior of wool fabric treated with a phosphorus-containing polycarboxylic acid. Polymers 13, 4111 (2021). https://doi.org/10.3390/polym13234111

    Article  Google Scholar 

  110. Williams, P.T., Cunliffe, A., Jones, N.: Recovery of value-added products from the pyrolytic recycling of glass-fibre-reinforced composite plastic waste. J. Energy Inst. 78, 51–61 (2005). https://doi.org/10.1179/174602205X40504

    Article  Google Scholar 

  111. Agblevor, F.A., Besler, S.: Inorganic compounds in biomass feedstocks 1: effect on the quality of fast pyrolysis oils. Energy Fuels. 10, 293–298 (1996). https://doi.org/10.1021/ef950202u

    Article  Google Scholar 

  112. Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., Hicks, K.B.: Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy. 34, 67–74 (2010). https://doi.org/10.1016/j.biombioe.2009.09.012

    Article  Google Scholar 

  113. Imam, T., Capareda, S.: Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J. Anal. Appl. Pyrolysis. 93, 170–177 (2012). https://doi.org/10.1016/j.jaap.2011.11.010

    Article  Google Scholar 

  114. Mustafa, A., Calay, R.K., Mustafa, M.Y.: A techno-economic study of a biomass gasification plant for the production of transport biofuel for small communities. Energy Procedia. 112, 529–536 (2017). https://doi.org/10.1016/j.egypro.2017.03.1111

    Article  Google Scholar 

  115. Wahbeh, B., Hamed, T.A., Kasher, R.: Hydrogen and boric acid production via boron hydrolysis. Renew. Energy. 48, 10–15 (2012). https://doi.org/10.1016/j.renene.2012.04.043

    Article  Google Scholar 

  116. Colson, V., Bourebrab, M., Dalmais, M., Jadeau, O., Lanos, C.: Formulation of novel fire retardant additives for biobased insulation material. Acad. J. Civ. Eng. 37, 134–141 (2019). https://doi.org/10.26168/icbbm2019.19

    Article  Google Scholar 

  117. Pena, J.J.: Study of chars prepared from biomass wastes : material and energy recovery, (2018). https://www.theses.fr/2018IMTA0104

  118. Yang, Y., Brammer, J.G., Mahmood, A.S.N., Hornung, A.: Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour. Technol. 169, 794–799 (2014). https://doi.org/10.1016/j.biortech.2014.07.044

    Article  Google Scholar 

  119. Dhahak, A., Hild, G., Rouaud, M., Mauviel, G., Burkle-Vitzthum, V.: Slow pyrolysis of polyethylene terephthalate: online monitoring of gas production and quantitative analysis of waxy products. J. Anal. Appl. Pyrolysis. 142, 104664 (2019). https://doi.org/10.1016/j.jaap.2019.104664

    Article  Google Scholar 

  120. Parthasarathy, P., Narayanan, K.S.: Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield—a review. Renew. Energy. 66, 570–579 (2014). https://doi.org/10.1016/j.renene.2013.12.025

    Article  Google Scholar 

  121. Udomsirichakorn, J., Salam, P.A.: Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification. Renew. Sustain. Energy Rev. 30, 565–579 (2014). https://doi.org/10.1016/j.rser.2013.10.013

    Article  Google Scholar 

  122. Demirbas, M.F.: Hydrogen from various biomass species via pyrolysis and steam gasification processes. Energy Sources Part Recovery Util. Environ. Eff. 28, 245–252 (2006). https://doi.org/10.1080/009083190890003

    Article  Google Scholar 

  123. Basu, P.: Chapter 5—gasification theory and modeling of gasifiers. In: Basu, P. (ed.) Biomass gasification and pyrolysis, pp. 117–165. Academic Press, Boston (2010)

    Chapter  Google Scholar 

  124. Hagos, F.Y., Aziz, A.R.A., Sulaiman, S.A., Mahgoub, B.K.M.: Low and medium calorific value gasification gas combustion in IC engines. IntechOpen (2016)

    Book  Google Scholar 

  125. Chae, J.-I., Kim, T., Lee, K., Jo, R., Kang, J.-W., Park, Y.-S.: Catalytic technologies for CO hydrogenation for the production of light hydrocarbons and middle distillates. Catalysts 10, 99 (2020). https://doi.org/10.3390/catal10010099

    Article  Google Scholar 

  126. Espuelas, S., Marcelino-Sádaba, S., del Castillo, J.M., Garcia, B., Seco, A.: Valorization of insulation cellulose waste as solid biomass fuel. Appl. Sci. 11, 8223 (2021). https://doi.org/10.3390/app11178223

    Article  Google Scholar 

  127. Gaunt, J.L., Lehmann, J.: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol. 42, 4152–4158 (2008). https://doi.org/10.1021/es071361i

    Article  Google Scholar 

Download references

Funding

This work was supported by the French Agency for Ecological Transition (ADEME) through the framework of the multi-partner VALO-MAT-BIO project coordinated by Inddigo as part of the BAT-RESP 2018 program "Towards responsible buildings by 2020".

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CR, SA and AV. The first draft of the manuscript was written by CR under the supervision of SA. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sary Awad.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabbat, C., Awad, S., Villot, A. et al. Towards the Production of High Added-Value Products from the Pyrolysis and Steam Pyro-Gasification of Five Biomass-Based Building Insulation Materials at End-of-Life. Waste Biomass Valor 14, 2061–2083 (2023). https://doi.org/10.1007/s12649-022-01989-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01989-2

Keywords