Abstract
Pyrolysis and gasification are two promising thermochemical conversion processes to transform biomass feedstocks into valuable fuels. Pyrolysis leads to the generation of biochar, tar (or bio-oil), and permanent gas while gasification produces mainly a syngas. This study explores the slow pyrolysis (550 °C) and steam pyro-gasification (850 °C), in a semi-rotating reactor, of five biomass-based insulation materials namely: cellulose wadding (CW) and panels consisting of textile, hemp, wood, and mixed fibers, after their characterization. Subsequently, the properties of the gaseous, solid and liquid products were investigated and their potential application was proposed. The pyrolysis bio-oils derived from hemp, mixed and wood fibers have low energy content (18.6–20.94 MJ/kg), high oxygen content (43.45–47.99 wt.%) and high viscosity (149–494 mPa.s), requiring further upgrading to transportation fuels. Biochars showed a high carbon content (65–85 wt.%), high heating value (20–32 MJ/kg) and a low specific surface area (0–18 m2/g), making them suitable for use as solid fuels. The only exception was textile biochar which revealed the highest surface area of 375 m2/g and a microporous structure (66%), hence its use as an adsorbent was recommended. The steam pyro-gasification generated hydrogen-rich syngas (around 50 mol.% H2) with medium calorific value (13–18 MJ/Nm3). The CW syngas presented a H2/CO ratio of 2.8, which favors its valorization via Fischer–Tropsch processes (diesel fuels). Boron was concentrated in CW pyro-gasification ash. Consequently, pyrolysis was favored for textile panels for microporous biochar formation and hemp/wood/mixed panels for bio-oil production; while gasification was privileged to CW for syngas production and boron recovery.
Graphical Abstract









Similar content being viewed by others
Data Availability
The datasets that support the findings of this study are available from the authors upon reasonable request.
References
European Commission: Energy performance of buildings directive. https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en, (2019)
Lecompte, T.: Matériaux bio-sourcés pour le bâtiment et stockage temporaire de carbone. 37 (2019)
Liu, L., Li, H., Lazzaretto, A., Manente, G., Tong, C., Liu, Q., Li, N.: The development history and prospects of biomass-based insulation materials for buildings. Renew. Sustain. Energy Rev. 69, 912–932 (2017). https://doi.org/10.1016/j.rser.2016.11.140
Cetiner, I., Shea, A.D.: Wood waste as an alternative thermal insulation for buildings. Energy Build. 168, 374–384 (2018). https://doi.org/10.1016/j.enbuild.2018.03.019
Nyers, J., Kajtar, L., Tomić, S., Nyers, A.: Investment-savings method for energy-economic optimization of external wall thermal insulation thickness. Energy Build. 86, 268–274 (2015). https://doi.org/10.1016/j.enbuild.2014.10.023
Lechtenböhmer, S., Schüring, A.: The potential for large-scale savings from insulating residential buildings in the EU. Energy Effic. 4, 257–270 (2011). https://doi.org/10.1007/s12053-010-9090-6
Jelle, B.P.: Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build. 43, 2549–2563 (2011). https://doi.org/10.1016/j.enbuild.2011.05.015
Abu-Jdayil, B., Mourad, A.-H., Hittini, W., Hassan, M., Hameedi, S.: Traditional, state-of-the-art and renewable thermal building insulation materials: an overview. Constr. Build. Mater. 214, 709–735 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.102
Breton, C., Blanchet, P., Amor, B., Beauregard, R., Chang, W.-S.: Assessing the climate change impacts of biogenic carbon in buildings: a critical review of two main dynamic approaches. Sustainability. 10, 2020 (2018). https://doi.org/10.3390/su10062020
Gustavsson, L., Haus, S., Lundblad, M., Lundström, A., Ortiz, C.A., Sathre, R., Truong, N.L., Wikberg, P.-E.: Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renew. Sustain. Energy Rev. 67, 612–624 (2017). https://doi.org/10.1016/j.rser.2016.09.056
Pavel, C.C., Blagoeva, D.T.: Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings, revised, p. 24. Publications Office of the European Union, Luxembourg (2018)
Asdrubali, F., D’Alessandro, F., Schiavoni, S.: A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4, 1–17 (2015). https://doi.org/10.1016/j.susmat.2015.05.002
Schiavoni, S., D’Alessandro, F., Bianchi, F., Asdrubali, F.: Insulation materials for the building sector: a review and comparative analysis. Renew. Sustain. Energy Rev. 62, 988–1011 (2016). https://doi.org/10.1016/j.rser.2016.05.045
Dutreix, N., Baecher, C., Pianu, B., Marx, I., Habasque, M., Bou Cherifi, F., Trannoy, L.: Etude sur le secteur et les filières de production des matériaux et produits biosourcés utilisés dans la construction (à l’exception du bois). Nomadéis, Paris (2017)
Colombel, R.: Forte croissance du marché des isolants biosourcés. https://www.batiweb.com/actualites/vie-des-societes/www.batiweb.com
Joreau, O.: Les isolants biosourcés doubleront leurs capacités de production d’ici 2025 (2021). https://www.batiradio.com/podcasts/megatrends/metiers/les-isolants-biosources-doubleront-leurs-capacites-de-production-dici-2025/
Floissac, L.: MATÉRIAUX BIOSOURCÉS : RESSOURCES ET USAGES D’ICI 2050 Modélisations: principes et résultats. Terracrea. 32 (2010)
Rabbat, C., Awad, S., Villot, A., Rollet, D., Andrès, Y.: Sustainability of biomass-based insulation materials in buildings: current status in France, end-of-life projections and energy recovery potentials. Renew. Sustain. Energy Rev. 156, 111962 (2022). https://doi.org/10.1016/j.rser.2021.111962
Amziane, S.: Overview on bio-based building material made with plant aggregate. RILEM Tech. Lett. 9 (2016)
Salami, A., Heikkinen, J., Tomppo, L., Hyttinen, M., Kekäläinen, T., Jänis, J., Vepsäläinen, J., Lappalainen, R.: A comparative study of pyrolysis liquids by slow pyrolysis of industrial hemp leaves hurds and roots. Mol. Basel Switz. 26, 3167 (2021). https://doi.org/10.3390/molecules26113167
Ronsse, F., van Hecke, S., Dickinson, D., Prins, W.: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy. 5, 104–115 (2013). https://doi.org/10.1111/gcbb.12018
Manyà, J.J., Azuara, M., Manso, J.A.: Biochar production through slow pyrolysis of different biomass materials: seeking the best operating conditions. Biomass Bioenergy. 117, 115–123 (2018). https://doi.org/10.1016/j.biombioe.2018.07.019
Bhardwaj, G., Kumar, M., Mishra, P.K., Upadhyay, S.N.: Kinetic analysis of the slow pyrolysis of paper wastes. Biomass Convers. Biorefinery. (2021). https://doi.org/10.1007/s13399-021-01363-7
Chowdhury, R., Sarkar, A.: Reaction kinetics and product distribution of slow pyrolysis of Indian textile wastes. Int. J. Chem. React. Eng. (2012). https://doi.org/10.1515/1542-6580.2662
Ahmed, I., Gupta, A.K.: Syngas yield during pyrolysis and steam gasification of paper. Appl. Energy. 86, 1813–1821 (2009). https://doi.org/10.1016/j.apenergy.2009.01.025
Dong, J., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., Lyczko, N., Tang, Y., Ducousso, M.: Hydrogen-rich gas production from steam gasification of bio-char in the presence of CaO. Waste Biomass Valorization. 8, 2735–2746 (2017). https://doi.org/10.1007/s12649-016-9784-x
González-Vázquez, M.P., García, R., Gil, M.V., Pevida, C., Rubiera, F.: Unconventional biomass fuels for steam gasification: kinetic analysis and effect of ash composition on reactivity. Energy 155, 426–437 (2018). https://doi.org/10.1016/j.energy.2018.04.188
Pfeifer, C., Koppatz, S., Hofbauer, H.: Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Convers. Biorefinery. 1, 39–53 (2011). https://doi.org/10.1007/s13399-011-0007-1
Yasin, S., Curti, M., Rovero, G., Hussain, M., Sun, D.: Spouted-bed gasification of flame retardant textiles as a potential non-conventional biomass: a preparatory study. Appl. Sci. 10, 946 (2020). https://doi.org/10.3390/app10030946
Wen, C., Wu, Y., Chen, X., Jiang, G., Liu, D.: The pyrolysis and gasification performances of waste textile under carbon dioxide atmosphere. J. Therm. Anal. Calorim. 128, 581–591 (2017). https://doi.org/10.1007/s10973-016-5887-7
Di Blasi, C., Branca, C., Galgano, A.: Flame retarding of wood by impregnation with boric acid—pyrolysis products and char oxidation rates. Polym. Degrad. Stab. 92, 752–764 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.02.007
Cheng, X., Wang, B.: Yield, composition, and property of biochar obtained from the two-step pyrolysis of rice husk impregnated with boric acid. Energies 10, 1814 (2017). https://doi.org/10.3390/en10111814
Li, H., Ma, X.-X., Gu, Z.-C., Wang, X., Li, J.-Z., Jiang, J., Fei, H., Yang, Z.-B.: Pyrolysis and combustion characteristics of boric acid and borax treated decorative bamboo filaments. BioResources 15, 8146–8160 (2020)
Zhang, Y., Mu, J., Li, S., Zhao, Y.: The effect of boric acid-borax on the pyrolysis characteristics of poplar oriented strand board. Beijing Linye Daxue Xuebao J. Beijing For. Univ. 37, 127–133 (2015). https://doi.org/10.13332/j.cnki.jbfu.2015.01.003
Xu, J.Z., Gao, M., Guo, H.Z., Liu, X.L., Li, Z., Wang, H., Tian, C.M.: Study on the thermal degradation of cellulosic fibers treated with flame retardants. J. Fire Sci. 20, 227–235 (2002). https://doi.org/10.1177/0734904102020003905
Kinata, S.E., Loubar, K., Pataschiv, M., Bouslamti, A., Belloncle, C., Tazerout, M.: Slow pyrolysis of CCB-treated wood for energy recovery: Influence of chromium, copper and boron on pyrolysis process and optimization. J. Anal. Appl. Pyrolysis. 104, 210–217 (2013). https://doi.org/10.1016/j.jaap.2013.08.002
Wang, Q., Li, J., Winandy, J.E.: Chemical mechanism of fire retardance of boric acid on wood. Wood Sci. Technol. (2004). https://doi.org/10.1007/s00226-004-0246-4
Maniscalco, M., La Paglia, F., Iannotta, P., Caputo, G., Scargiali, F., Grisafi, F., Brucato, A.: Slow pyrolysis of an LDPE/PP mixture: kinetics and process performance. J. Energy Inst. 96, 234–241 (2021). https://doi.org/10.1016/j.joei.2021.03.006
Zhong, M., Chen, S., Wang, T., Liu, J., Mei, M., Li, J.: Co-pyrolysis of polyester and cotton via thermogravimetric analysis and adsorption mechanism of Cr(VI) removal by carbon in aqueous solution. J. Mol. Liq. 354, 118902 (2022). https://doi.org/10.1016/j.molliq.2022.118902
Vo, T.A., Tran, Q.K., Ly, H.V., Kwon, B., Hwang, H.T., Kim, J., Kim, S.-S.: Co-pyrolysis of lignocellulosic biomass and plastics: a comprehensive study on pyrolysis kinetics and characteristics. J. Anal. Appl. Pyrolysis. 163, 105464 (2022). https://doi.org/10.1016/j.jaap.2022.105464
Fekhar, B., Zsinka, V., Miskolczi, N.: Thermo-catalytic co-pyrolysis of waste plastic and paper in batch and tubular reactors for in-situ product improvement. J. Environ. Manage. 269, 110741 (2020). https://doi.org/10.1016/j.jenvman.2020.110741
Terry, L.M., Li, C., Chew, J.J., Aqsha, A., How, B.S., Loy, A.C.M., Chin, B.L.F., Khaerudini, D.S., Hameed, N., Guan, G., Sunarso, J.: Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: a review. Carbon Resour. Convers. 4, 239–250 (2021). https://doi.org/10.1016/j.crcon.2021.10.002
Simanungkalit, S.P., Mansur, D., Fitriady, M.A.: Effect of plastic blends on slow pyrolysis of oil palm empty fruit bunch. AIP Conf. Proc. 2024, 020003 (2018). https://doi.org/10.1063/1.5064289
Kusrini, E., Supramono, D., Degirmenci, V., Pranata, S., Bawono, A.A., Ani, N.: Improving the quality of pyrolysis oil from co-firing high-density polyethylene plastic waste and palm empty fruit bunches. Int. J. Technol. 9, 1498 (2018). https://doi.org/10.14716/ijtech.v9i7.2531
Chetehouna, K., Belayachi, N., Lemée, L., Hoxha, D., Rengel, B.: Pyrolysis gases released during the thermal degradation of insulation materials based on straw fibers. J. Therm. Anal. Calorim. 122, 1417–1422 (2015). https://doi.org/10.1007/s10973-015-4584-2
Duboc, O., Steiner, K., Radosits, F., Wenzel, W.W., Goessler, W., Santner, J.: Functional recycling of biobased, borate-stabilized insulation materials as B fertilizer. Environ. Sci. Technol. 53, 14620–14629 (2019). https://doi.org/10.1021/acs.est.9b04234
Mu, J., Lai, Z.Y.: Pyrolysis Characteristics of wood-based panels and its products. Presented at the July 5 (2017)
ISO 18122:2015—Solid biofuels—Determination of ash content.
D07 Committee: ASTM D1762–84—test method for chemical analysis of wood charcoal. ASTM International (2021)
D02 Committee: ASTM D482–19—Test method for ash from petroleum products. ASTM International
Wallace, J.M., Hobbs, P.V.: 3—atmospheric thermodynamics. In: Wallace, J.M., Hobbs, P.V. (eds.) Atmospheric science (2nd ed.), pp. 63–111. Academic Press, San Diego (2006)
Vargun, E., Baysal, E., Turkoglu, T., Yuksel, M., Toker, H., Vargun, E., Baysal, E., Turkoglu, T., Yuksel, M., Toker, H.: Thermal degradation of oriental beech wood impregnated with different inorganic salts. Maderas Cienc. Tecnol. 21, 163–170 (2019). https://doi.org/10.4067/S0718-221X2019005000204
ISO 18123:2015—solid biofuels—determination of the content of volatile matter.
Pena, J., Villot, A., Gerente, C.: Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas. Biomass Bioenergy. 132, 105435 (2020). https://doi.org/10.1016/j.biombioe.2019.105435
D02 Committee: ASTM D445–21—test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). ASTM International
ISO 9277:2010—Determination of the specific surface area of solids by gas adsorption—BET method. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/49/44941.html
Lopez Hurtado, P., Rouilly, A., Vandenbossche, V., Raynaud, C.: A review on the properties of cellulose fibre insulation. Build. Environ. 96, 170–177 (2016). https://doi.org/10.1016/j.buildenv.2015.09.031
Ansah, E., Wang, L., Shahbazi, G.: Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Manag. (2016). https://doi.org/10.1016/j.wasman.2016.06.015
Naghavi, R., Abdoli, M., Karbassi, A.R., Adl, M.: Improving the quantity and quality of biogas production in tehran anaerobic digestion power plant by application of materials recirculation technique. Int. J. Renew. Energy Dev. 9, 167–175 (2020). https://doi.org/10.14710/ijred.9.2.167-175
Kim, D., Prawisudha, P., Yoshikawa, K.: Hydrothermal upgrading of Korean MSW for solid fuel production: effect of MSW composition. Presented at the March 16 (2017)
Fan, J., Matharu, A., Zhang, Z., Macquarrie, D., Clark, J., Hunt, A., Shuttleworth, P., Gronnow, M., De Bruyn, M., Budarin, V.: Low-temperature microwave-assisted pyrolysis of waste office paper and the application of bio-oil as an Al adhesive. Green Chem. 17, 260–270 (2014). https://doi.org/10.1039/C4GC00768A
Tihay, V., Boulnois, C., Gillard, P.: Influence of oxygen concentration on the kinetics of cellulose wadding degradation. Thermochim. Acta. 525, 16–24 (2011). https://doi.org/10.1016/j.tca.2011.07.016
Choudhary, A., Sheena, B.: Influences of elastane content, aesthetic finishes and fabric weight on mechanical and comfort properties of denim fabrics. J. Text. Eng. Fash. Technol. (2018). https://doi.org/10.15406/jteft.2018.04.00119
Otaigbes, J.U., Madbouly, A.: 11—the processing, structure and properties of elastomeric fibers. In: Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T. (eds.) Handbook of textile fibre structure, pp. 325–351. Woodhead Publishing (2009)
LaRance, D.: The chemistry of denim. https://www.chemistryislife.com/the-chemistry-of-denim
van der Velden, N.M., Patel, M.K., Vogtländer, J.G.: LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. Int. J. Life Cycle Assess. 19, 331–356 (2014). https://doi.org/10.1007/s11367-013-0626-9
Akı, S.U., Candan, C., Nergis, B., Önder, N.S.: Understanding denim recycling: a quantitative study with lifecycle assessment methodology. IntechOpen (2020)
Arenales Rivera, J., Pérez López, V., Ramos Casado, R., Sánchez Hervás, J.-M.: Thermal degradation of paper industry wastes from a recovered paper mill using TGA: characterization and gasification test. Waste Manag. 47, 225–235 (2016). https://doi.org/10.1016/j.wasman.2015.04.031
Singh, Y.D., Mahanta, P., Bora, U.: Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy. 103, 490–500 (2017). https://doi.org/10.1016/j.renene.2016.11.039
McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46 (2002). https://doi.org/10.1016/S0960-8524(01)00118-3
Dorez, G., Ferry, L., Sonnier, R., Taguet, A., Lopez-Cuesta, J.-M.: Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrolysis. 107, 323–331 (2014). https://doi.org/10.1016/j.jaap.2014.03.017
Liu, M., Thygesen, A., Summerscales, J., Meyer, A.: Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: a review. Ind. Crops Prod. 108, 660–683 (2017). https://doi.org/10.1016/j.indcrop.2017.07.027
Prasad, S., Singh, A., Joshi, H.C.: Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50, 1–39 (2007). https://doi.org/10.1016/j.resconrec.2006.05.007
Hu, G., Fu, S., Liumaki, H.: Hemicellulose in pulp affects paper properties and printability. Appita Technol. Innov. Manuf. Environ. (2013)
Salmeia, K.A., Jovic, M., Ragaisiene, A., Rukuiziene, Z., Milasius, R., Mikucioniene, D., Gaan, S.: Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers 8, E293 (2016). https://doi.org/10.3390/polym8080293
Domingos, I., Ayata, U., Ferreira, J., Cruz-Lopes, L., Sen, A., Sahin, S., Esteves, B.: Calorific power improvement of wood by heat treatment and its relation to chemical composition. Energies 13, 5322 (2020). https://doi.org/10.3390/en13205322
Princi, E., Vicini, S., Marsano, E., Trefiletti, V.: Influence of the artificial weathering on thermal stability of paper-based materials. Thermochim. Acta. 468, 27–34 (2008). https://doi.org/10.1016/j.tca.2007.11.019
Pedieu, R., Koubaa, A., Riedl, B., Wang, X.-M., Deng, J.: Fire-retardant properties of wood particleboards treated with boric acid. Eur. J. Wood Wood Prod. 70, 191–197 (2012). https://doi.org/10.1007/s00107-011-0538-y
Zigo, J., Rantuch, P., Balog, K.: Thermal decomposition of loose-fill cellulose thermal insulation. Adv. Mater. Res. 1001, 379–382 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1001.379
Zhang, J., Koubaa, A., Xing, D., Wang, H., Wang, Y., Liu, W., Zhang, Z., Wang, X., Wang, Q.: Conversion of lignocellulose into biochar and furfural through boron complexation and esterification reactions. Bioresour. Technol. 312, 123586 (2020). https://doi.org/10.1016/j.biortech.2020.123586
Uddin, K.M.A., Ago, M., Rojas, O.J.: Hybrid films of chitosan, cellulose nanofibrils and boric acid: flame retardancy, optical and thermo-mechanical properties. Carbohydr. Polym. 177, 13–21 (2017). https://doi.org/10.1016/j.carbpol.2017.08.116
Wicklein, B., Kocjan, D., Carosio, F., Camino, G., Bergström, L.: Tuning the nanocellulose-borate interaction to achieve highly flame retardant hybrid materials. Chem. Mater. 28, 1985–1989 (2016). https://doi.org/10.1021/acs.chemmater.6b00564
Zhang, J., Koubaa, A., Xing, D., Liu, W., Wang, Q., Wang, X., Wang, H.: Improving lignocellulose thermal stability by chemical modification with boric acid for incorporating into polyamide. Mater. Des. 191, 108589 (2020). https://doi.org/10.1016/j.matdes.2020.108589
Fei, C.U.I., Long, Y.A.N.: Flame retardancy and pyrolysis kinetics of Pinus yunnanensis flame-retarded synergically by NH4H2PO4 and borax. China Saf. Sci. J. 28, 38 (2018). https://doi.org/10.16265/j.cnki.issn1003-3033.2018.07.007
Balcı, S., Sezgi, N.A., Eren, E.: Boron oxide production kinetics using boric acid as raw material. Ind. Eng. Chem. Res. 51, 11091–11096 (2012). https://doi.org/10.1021/ie300685x
Oudiani, A.E., Chaabouni, Y., Msahli, S., Sakli, F.: Crystal transition from cellulose I to cellulose II in NaOH treated Agave Americana L fibre. Carbohydr. Polym. 86, 1221–1229 (2011). https://doi.org/10.1016/j.carbpol.2011.06.037
Kolpak, F.J., Blackwell, J.: Determination of the structure of cellulose II. Macromolecules 9, 273–278 (1976). https://doi.org/10.1021/ma60050a019
Méndez, A., Fidalgo, J.M., Guerrero, F., Gascó, G.: Characterization and pyrolysis behaviour of different paper mill waste materials. J. Anal. Appl. Pyrolysis. 86, 66–73 (2009). https://doi.org/10.1016/j.jaap.2009.04.004
Rantuch, P., Chrebet, T.: Thermal decomposition of cellulose insulation. Cellul. Chem. Technol. 48, 461–467 (2014)
Capart, R., Khezami, L., Burnham, A.K.: Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim. Acta. 417, 79–89 (2004). https://doi.org/10.1016/j.tca.2004.01.029
Mamleev, V., Bourbigot, S., Yvon, J.: Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J. Anal. Appl. Pyrolysis. 80, 151–165 (2007). https://doi.org/10.1016/j.jaap.2007.01.013
Rychlý, J., Strlič, M., Matisová-Rychlá, L., Kolar, J.: Chemiluminescence from paper I: kinetic analysis of thermal oxidation of cellulose. Polym. Degrad. Stab. 78, 357–367 (2002). https://doi.org/10.1016/S0141-3910(02)00187-8
Thi, V.V.D.: Matériaux composites à fibres naturelles/polymère biodégradables ou non (2011). https://tel.archives-ouvertes.fr/tel-00652477
Magovac, E., Vončina, B., Jordanov, I., Grunlan, J.C., Bischof, S.: Layer-by-layer deposition: a promising environmentally benign flame-retardant treatment for cotton, polyester, polyamide and blended textiles. Materials. 15, 432 (2022). https://doi.org/10.3390/ma15020432
Zhu, P., Sui, S., Wang, B., Sun, K., Sun, G.: A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY–GC–MS. J. Anal. Appl. Pyrolysis. 71, 645–655 (2004). https://doi.org/10.1016/j.jaap.2003.09.005
Muralidhara, K.S., Sreenivasan, S.: Thermal degradation kinetic data of polyester, cotton and polyester-cotton blended textile material. 6 (2010)
Manich, A., Pérez-Rentero, S., Alonso, C., Coderch, L., Martí, M.: Thermal analysis of healthy and ecological friendly flame retardants for textiles. KnE Eng. (2020). https://doi.org/10.18502/keg.v5i6.7028
Singh, R.K., Ruj, B., Sadhukhan, A.K., Gupta, P.: Thermal degradation of waste plastics under non-sweeping atmosphere: part 1: effect of temperature, product optimization, and degradation mechanism. J. Environ. Manage. 239, 395–406 (2019). https://doi.org/10.1016/j.jenvman.2019.03.067
Das, P., Tiwari, P.: Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments. Thermochim. Acta. 679, 178340 (2019). https://doi.org/10.1016/j.tca.2019.178340
Monahan, A.R.: Thermal degradation of polyacrylonitrile in the temperature range 280–450°c. J. Polym. Sci. [A1] 4, 2391–2399 (1966). https://doi.org/10.1002/pol.1966.150041005
Lin, Y., Yu, B., Jin, X., Song, L., Hu, Y.: Study on thermal degradation and combustion behavior of flame retardant unsaturated polyester resin modified with a reactive phosphorus containing monomer. RSC Adv. 6, 49633–49642 (2016). https://doi.org/10.1039/C6RA06544A
Tomaszewska, K., Kałużna-Czaplińska, J., Jóźwiak, W.: Thermal and thermo-catalytic degradation of polyolefins as a simple and efficient method of landfill clearing. Pol. J. Chem. Technol. (2010). https://doi.org/10.2478/v10026-010-0034-x
Slopiecka, K., Bartocci, P., Fantozzi, F.: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy. 97, 491–497 (2012). https://doi.org/10.1016/j.apenergy.2011.12.056
Mofokeng, J., Luyt, A., Tábi, T., Kovacs, J.: Comparison of injection moulded, natural fibre reinforced composites with PP and PLA as matrices. J. Thermoplast. Compos. Mater. 25, 927–948 (2012). https://doi.org/10.1177/0892705711423291
Jia, H., Ben, H., Luo, Y., Wang, R.: Catalytic fast pyrolysis of poly (ethylene terephthalate) (PET) with zeolite and nickel chloride. Polymers 12, 705 (2020). https://doi.org/10.3390/polym12030705
Mukhambet, Y., Shah, D., Tatkeyeva, G., Sarbassov, Y.: Slow pyrolysis of flax straw biomass produced in Kazakhstan: Characterization of enhanced tar and high-quality biochar. Fuel 324, 124676 (2022). https://doi.org/10.1016/j.fuel.2022.124676
Yunchu, H., Peijang, Z., Songsheng, Q.: TG-DTA studies on wood treated with flame-retardants. Holz Als Roh- Werkst. 58, 35–38 (2000). https://doi.org/10.1007/s001070050382
Tang, W., Neill, W.: Effect of flame retardants on pyrolysis and combustion of cellulose. J. Polym. Sci. C Polym. Symp. 6, 65–81 (2007). https://doi.org/10.1002/polc.5070060109
Wang, H., Guo, S., Zhang, C., Qi, Z., Li, L., Zhu, P.: Flame retardancy and thermal behavior of wool fabric treated with a phosphorus-containing polycarboxylic acid. Polymers 13, 4111 (2021). https://doi.org/10.3390/polym13234111
Williams, P.T., Cunliffe, A., Jones, N.: Recovery of value-added products from the pyrolytic recycling of glass-fibre-reinforced composite plastic waste. J. Energy Inst. 78, 51–61 (2005). https://doi.org/10.1179/174602205X40504
Agblevor, F.A., Besler, S.: Inorganic compounds in biomass feedstocks 1: effect on the quality of fast pyrolysis oils. Energy Fuels. 10, 293–298 (1996). https://doi.org/10.1021/ef950202u
Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., Hicks, K.B.: Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy. 34, 67–74 (2010). https://doi.org/10.1016/j.biombioe.2009.09.012
Imam, T., Capareda, S.: Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J. Anal. Appl. Pyrolysis. 93, 170–177 (2012). https://doi.org/10.1016/j.jaap.2011.11.010
Mustafa, A., Calay, R.K., Mustafa, M.Y.: A techno-economic study of a biomass gasification plant for the production of transport biofuel for small communities. Energy Procedia. 112, 529–536 (2017). https://doi.org/10.1016/j.egypro.2017.03.1111
Wahbeh, B., Hamed, T.A., Kasher, R.: Hydrogen and boric acid production via boron hydrolysis. Renew. Energy. 48, 10–15 (2012). https://doi.org/10.1016/j.renene.2012.04.043
Colson, V., Bourebrab, M., Dalmais, M., Jadeau, O., Lanos, C.: Formulation of novel fire retardant additives for biobased insulation material. Acad. J. Civ. Eng. 37, 134–141 (2019). https://doi.org/10.26168/icbbm2019.19
Pena, J.J.: Study of chars prepared from biomass wastes : material and energy recovery, (2018). https://www.theses.fr/2018IMTA0104
Yang, Y., Brammer, J.G., Mahmood, A.S.N., Hornung, A.: Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour. Technol. 169, 794–799 (2014). https://doi.org/10.1016/j.biortech.2014.07.044
Dhahak, A., Hild, G., Rouaud, M., Mauviel, G., Burkle-Vitzthum, V.: Slow pyrolysis of polyethylene terephthalate: online monitoring of gas production and quantitative analysis of waxy products. J. Anal. Appl. Pyrolysis. 142, 104664 (2019). https://doi.org/10.1016/j.jaap.2019.104664
Parthasarathy, P., Narayanan, K.S.: Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield—a review. Renew. Energy. 66, 570–579 (2014). https://doi.org/10.1016/j.renene.2013.12.025
Udomsirichakorn, J., Salam, P.A.: Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification. Renew. Sustain. Energy Rev. 30, 565–579 (2014). https://doi.org/10.1016/j.rser.2013.10.013
Demirbas, M.F.: Hydrogen from various biomass species via pyrolysis and steam gasification processes. Energy Sources Part Recovery Util. Environ. Eff. 28, 245–252 (2006). https://doi.org/10.1080/009083190890003
Basu, P.: Chapter 5—gasification theory and modeling of gasifiers. In: Basu, P. (ed.) Biomass gasification and pyrolysis, pp. 117–165. Academic Press, Boston (2010)
Hagos, F.Y., Aziz, A.R.A., Sulaiman, S.A., Mahgoub, B.K.M.: Low and medium calorific value gasification gas combustion in IC engines. IntechOpen (2016)
Chae, J.-I., Kim, T., Lee, K., Jo, R., Kang, J.-W., Park, Y.-S.: Catalytic technologies for CO hydrogenation for the production of light hydrocarbons and middle distillates. Catalysts 10, 99 (2020). https://doi.org/10.3390/catal10010099
Espuelas, S., Marcelino-Sádaba, S., del Castillo, J.M., Garcia, B., Seco, A.: Valorization of insulation cellulose waste as solid biomass fuel. Appl. Sci. 11, 8223 (2021). https://doi.org/10.3390/app11178223
Gaunt, J.L., Lehmann, J.: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol. 42, 4152–4158 (2008). https://doi.org/10.1021/es071361i
Funding
This work was supported by the French Agency for Ecological Transition (ADEME) through the framework of the multi-partner VALO-MAT-BIO project coordinated by Inddigo as part of the BAT-RESP 2018 program "Towards responsible buildings by 2020".
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CR, SA and AV. The first draft of the manuscript was written by CR under the supervision of SA. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rabbat, C., Awad, S., Villot, A. et al. Towards the Production of High Added-Value Products from the Pyrolysis and Steam Pyro-Gasification of Five Biomass-Based Building Insulation Materials at End-of-Life. Waste Biomass Valor 14, 2061–2083 (2023). https://doi.org/10.1007/s12649-022-01989-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-022-01989-2