Skip to main content
Log in

An Integrated System of Pleurotus pulmonarius and Protaetia brevitarsis Larvae Promotes the Efficient and High-Value Utilization of Lignocellulosic Biomass

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The growing world population has increased the demand for food and energy production and made the need to develop innovative approaches to convert lignocellulosic biomass to food and bio-based products particularly pressing.

Methods

Here, an integrated system consisting of Pleurotus pulmonarius and Protaetia brevitarsis larvae (PBL) that mediates the conversion of spent mushroom substrate (SMS) was developed, and this system permits the nutrients in three types of lignocellulosic biomass (softwood, hardwood, and shrub biomass) to be high-value utilized.

Results

The biological efficiency (BE) of the substrates ranged from 61.89 to 81.01%, and the total protein content in the fruiting bodies ranged from 30.68 to 39.95%. The total weight loss after mushroom production ranged from 16.68 to 23.31% of the initial substrate dry mass. These results reveal the potential of P. pulmonarius to be used for the biological pretreatment of the three types of tested biomass. The potential of PBL to utilize and convert three SMSs was investigated, and the SMS utilization rate and the SMS conversion rate varied from 66.40 to 87.64% and from 80.56 to 87.48%, respectively. PBL can efficiently convert the three SMSs into granulated frass with high organic matter content.

Conclusion

This new strategy for achieving the full utilization of lignocellulosic biomass by combining mushroom with PBL could aid the development of environmentally friendly and high-value-added processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. FAO: The Future of Food and Agriculture—Alternative Pathways to 2050. Summary Version. Food and Agriculture Organization of the United Nations, Rome (2018)

    Google Scholar 

  2. Specht, K., Siebert, R., Hartmann, I., Freisinger, U., Sawicka, M., Werner, A., Thomaier, S., Henckel, D., Walk, H., Dierich, A.: Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 31, 33–51 (2014)

    Article  Google Scholar 

  3. Chen, F., Xiong, S., Sundelin, J., Martín, C., Hultberg, M.: Potential for combined production of food and biofuel: cultivation of Pleurotus pulmonarius on soft- and hard-wood sawdusts. J. Clean. Prod. 266, 122011 (2020)

    Article  Google Scholar 

  4. Daehwan, K.: Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules 23, 309 (2018)

    Article  Google Scholar 

  5. Zhuang, X., Zhan, H., Song, Y., He, C., Huang, Y., Yin, X., Wu, C.: Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC). Fuel 236, 960–974 (2019)

    Article  Google Scholar 

  6. Andlar, M., Rezic, T., Mardetko, N., Kracher, D., Ludwig, R., Santek, B.: Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 18, 768–778 (2018)

    Article  Google Scholar 

  7. Kumar, C., Kumar, G., Kumar, S., Fernandes, A., Da, S.: The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264, 370–381 (2018)

    Article  Google Scholar 

  8. Liu, Y., Li, B., Feng, Y., Cui, Q.: Consolidated bio-saccharification: leading lignocellulose bioconversion into the real world. Biotechnol. Adv. 40, 107535 (2020)

    Article  Google Scholar 

  9. Sharma, H., Xu, C., Qin, W.: Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. 10, 235–251 (2017)

    Article  Google Scholar 

  10. Wan Mahari, W., Peng, W., Nam, W., Yang, H., Lee, X., Lee, Y., Liew, R., Ma, N., Mohammad, A., Sonne, C., Van Le, Q., Show, P., Chen, W., Lam, S.: A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J. Hazard. Mater. 400, 123156 (2020)

    Article  Google Scholar 

  11. Do Carmo, C., da Silva, R., de Souza Rodrigues, M., Fermino Soares, A.: Bioconversion of sisal agro-industrial waste into high protein oyster mushrooms. Bioresour. Technol. Rep. 14, 100657 (2021)

    Article  Google Scholar 

  12. Sun, C.: Study on the recycling mode of “Wheat straw-Stropharia rugosoannulata-Protaetia brevitarsis”. Shandong Agricultural University Master Degree Thesis (2018)

  13. Fernandes, A., Barros, L., Martins, A., Herbert, P., Ferreira, I.: Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate. Food Chem. 169, 396–400 (2015)

    Article  Google Scholar 

  14. Ivarsson, E., Grudén, M., Södergren, J., Hultberg, M.: Use of faba bean (Vicia faba L.) hulls as substrate for Pleurotus ostreatus-potential for combined mushroom and feed production. J. Clean. Prod. 313, 127969 (2021)

    Article  Google Scholar 

  15. Wu, N., Tian, F., Moodley, O., Song, B., Jia, C., Ye, J., Lv, R., Qin, Z., Li, C.: Optimization of agro-residues as substrates for Pleurotus pulmonarius production. AMB Express (2019). https://doi.org/10.1186/s13568-019-0907-1

    Article  Google Scholar 

  16. Wang, K., Li, P., Gao, Y., Liu, C., Wang, Q., Yin, J., Zhang, J., Geng, L., Shu, C.: De novo genome assembly of the white-spotted flower chafer (Protaetia brevitarsis). GigaScience (2019). https://doi.org/10.1093/gigascience/giz019

    Article  Google Scholar 

  17. Kang, S., Park, C., Han, S., Yi, Y., Kim, Y.: A grub (Protaetia brevitarsis seulensis) rearing technique using cellulose-digesting bacteria and natural recycling of rearing byproduct to an organic fertilizer. Korean J. Appl. Entomol. 44, 189–197 (2005)

    Article  Google Scholar 

  18. Tian, X., Zhang, J., Liu, R., Zhang, X., Duan, J., Shu, C.: Diversity of gut bacteria in larval Protaetia brevitarsis (Coleoptera: Scarabaedia) fed on corn stalk. Acta Entomol. Sin. 60, 632–641 (2017)

    Google Scholar 

  19. Lee, J., Hwang, S., Cho, S.: cDNA cloning and molecular characterization of a defensin-like antimicrobial peptide from larvae of Protaetia brevitarsis seulensis (Kolbe). Mol. Biol. Rep. 43, 371–379 (2016)

    Article  Google Scholar 

  20. Ham, Y., Kim, S., Song, D., Kim, H., Kim, I.: Nutritional composition of white-spotted flower chafer (Protaetia brevitarsis) larvae produced from commercial insect farms in Korea. Food Sci. Anim. Resour. 41, 416–427 (2021)

    Article  Google Scholar 

  21. Li, Y., Fu, T., Geng, L., Shi, Y., Chu, H., Liu, F., Liu, C., Song, F., Zhang, J., Shu, C.: Protaetia brevitarsis larvae can efficiently convert herbaceous and ligneous plant residues to humic acids. Waste Manag. 83, 79–82 (2019)

    Article  Google Scholar 

  22. Wei, P., Li, Y., Lai, D., Geng, L., Liu, C., Zhang, J., Shu, C., Liu, R.: Protaetia brevitarsis larvae can feed on and convert spent mushroom substrate from Auricularia auricula and Lentinula edodes cultivation. Waste Manag. 114, 234–239 (2020)

    Article  Google Scholar 

  23. Bunnell, F., Houde, I.: Down wood and biodiversity-implications to forest practices. Environ. Rev. 18, 397–421 (2010)

    Article  Google Scholar 

  24. Meyer, S., Rusterholz, H., Baur, B.: Saproxylic insects and fungi in deciduous forests along a rural–urban gradient. Ecol. Evol. 11, 1634–1652 (2020)

    Article  Google Scholar 

  25. Parisi, F., Pioli, S., Lombardi, F., Fravolini, G., Marchetti, M., Tognetti, R.: Linking deadwood traits with saproxylic invertebrates and fungi in European forests—a review. iForest 11, 423–436 (2018)

    Article  Google Scholar 

  26. Hardersen, S., Zapponi, L.: Wood degradation and the role of saproxylic insects for lignoforms. Appl. Soil. Ecol. 123, 334–338 (2018)

    Article  Google Scholar 

  27. Van Soest, P.: Use of detergents in the analysis of fibrous feeds II: a rapid method for the determination of fibre and lignin. J. Assoc. Off. Agric. Chem. 46, 829–835 (1963)

    Google Scholar 

  28. Horwitz, W.: Official Methods of Analysis of the Association of Official Analytical Chemists, pp. 134–135. Association of Official Analytical Chemists, Washington (1980)

    Google Scholar 

  29. Kadnikova, I., Costa, R., Tatiana, K., Guruleva, O., Shi, Y.: Chemical composition and nutritional value of the mushroom Auricularia auricula-judae. J. Food. Nutr. Res. 3, 478–482 (2015)

    Google Scholar 

  30. Jin, Z., Li, Y., Ren, J., Qin, N.: Yield, nutritional content, and antioxidant activity of Pleurotus ostreatus on corncobs supplemented with herb residues. Mycobiology 46, 24–32 (2018)

    Article  Google Scholar 

  31. Rugolo, M., Lechner, B., Mansilla, R., Mata, G., Rajchenberg, M.: Evaluation of Pleurotus ostreatus basidiomes production on Pinus sawdust and other agricultural and forestry wastes from Patagonia, Argentina. Maderas Ciencia y tecnología 22(4), 516–524 (2020)

    Google Scholar 

  32. Huang, C., Wu, X., Dai, X., Carballar-Lejarazú, R., Wu, S.: Utilization of Nematode-infected pinewood for mushroom cultivation and production of reducing sugar. BioResources 15, 8403–8419 (2020)

    Article  Google Scholar 

  33. Kuhar, F., Postemsky, P., Bianchinotti, M.: Conditions affecting lingzhi or reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes) basidiome quality, morphogenesis, and biodegradation of wood by-products in Argentina. Int. J. Med. Mushrooms 20, 495–506 (2018)

    Article  Google Scholar 

  34. Siwulski, M., Rzymski, P., Anna, K., Budzyńska, S., Dawidowicz, L., Hajduk, E., Kozak, L., Budzulak, J., Sobieralski, K., Niedzielski, P.: The effect of different substrates on the growth of six cultivated mushroom species and composition of macro and trace elements in their fruiting bodies. Eur. Food Res. Technol. 245, 419–431 (2018)

    Article  Google Scholar 

  35. Lavelli, V., Proserpio, C., Gallotti, F., Laureati, M., Pagliarini, E.: Circular reuse of bio-resources: the role of Pleurotus spp. in the development of functional foods. Food Funct. 9, 1353–1372 (2018)

    Article  Google Scholar 

  36. Jo, E., Choi, J., Ahn, J.: Influence of food waste compost on the yield and mineral content of Ganoderma lucidum, Lentinula edodes, and Pholiota adipose fruiting bodies. Mycobiology 41, 210–213 (2013)

    Article  Google Scholar 

  37. Mleczek, M., Budka, A., Kalac, P., Siwulski, M., Niedzielski, P.: Family and species as determinants modulating mineral composition of selected wild-growing mushroom species. Environ. Sci. Pollut. Res. Int. 28, 389–404 (2021)

    Article  Google Scholar 

  38. Demirbas, A.: Estimating of structural composition of wood and non-wood biomass samples. Energy Sources 27, 761–767 (2005)

    Article  Google Scholar 

  39. Zhu, J., Pan, X.: Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour. Technol. 101, 4992–5002 (2010)

    Article  Google Scholar 

  40. Yu, H., Guo, G., Zhang, X., Yan, K., Xu, C.: The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour. Technol. 100, 5170–5175 (2009)

    Article  Google Scholar 

  41. Lehmann, J., Kleber, M.: The contentious nature of soil organic matter. Nature 528, 60–68 (2015)

    Article  Google Scholar 

  42. Wall, D., Nielsen, U., Six, J.: Soil biodiversity and human health. Nature 528, 69–76 (2015)

    Article  Google Scholar 

  43. Xiao, X., Mazza, L., Yu, Y., Cai, M., Zheng, L., Tomberlin, J., Yu, J., van Huis, A., Yu, Z., Fasulo, S., Zhang, J.: Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. J. Environ. Manag. 217, 668–676 (2018)

    Article  Google Scholar 

  44. Zorpas, A., Lasaridi, K., Pociovalisteanu, D., Loizia, P.: Monitoring and evaluation of prevention activities regarding household organics waste from insular communities. J. Clean. Prod. 172, 3567–3577 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (31701976) and Major Agricultural Application Technology Innovation Project of Shandong Province (SD2019ZZ015). We thank TopEdit (www.topeditsci.com) for linguistic assistance during the preparation of this manuscript.

Funding

This research was supported by Young Scientists Fund (Grant No. 31701976), Key Technology Research and Development Program of Shandong (Grant No. SD2019ZZ015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongchao Li, Yusheng Liu or Li Wang.

Ethics declarations

Conflict of interest

All the authors mutually agree for submitting this manuscript to Journal of Cleaner Production. We declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, X., Zhou, T. et al. An Integrated System of Pleurotus pulmonarius and Protaetia brevitarsis Larvae Promotes the Efficient and High-Value Utilization of Lignocellulosic Biomass. Waste Biomass Valor 14, 277–286 (2023). https://doi.org/10.1007/s12649-022-01872-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01872-0

Keywords

Navigation