Skip to main content

Advertisement

Log in

Use of Bioplastic Bags for the Collection of Organic Waste in an Electromechanical Composter: Effects on the Facility Management and the Compost Quality

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Although the biodegradability of compostable bioplastic bags (CBBs) is well ascertained, concerns arise about the possibility of treating a massive quantity of compostable materials in composting facilities of all sizes and configurations. These concerns are even greater in small-scale composting where the biodegrading conditions may be milder that those in industrial composting. In this work, 7–15 lightweight CBBs were disposed of, together with organic food waste, in an electromechanical composter (EMC), every day for about 2 months. For the bulking agent, fragments and twigs of golden wattle wood were used instead of the recommended wood pellets. The composting process was carried out for 3 months in the EMC, and for further 4 months in a heap, in order to complete the maturation. During the process, critical issues in general, and any due to the presence of the CBBs, were reported: high temperatures, up to 72 °C, were constantly reached both in the ECM and in the heap, while critical anaerobic pockets were not detected. After 7 months, when the temperature and pH of the heap were equal to the ambient temperature and to 7.4, respectively, and were constant over time, the process was stopped and the compost produced underwent chemical, physical and biological analysis, in order to evaluate its quality. The CBBs did not produce any visual contamination of the final compost with bioplastic residues. Finally, all the stability, environmental and agronomic parameters were in compliance with the reference values established by law. This work shows how lightweight CBBs are perfectly managed by the EMC, at least with a CBB/organic waste mass ratio that is consistent with a normal use of CBBs as the collector of organic waste.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study is included in this published article.

References

  1. European Environment Agency: Bio-waste in Europe — turning challenges into opportunities. Report No. 04/2020.

  2. Directive 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste.

  3. Directive 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste.

  4. Onwosi, C.O., Igbokwe, V.C., Odimba, J.N., Eke, I.E., Nwankwoala, M.O., Iroh, I.N., Ezeogu, L.I.: Composting technology in waste stabilization: on the methods, challenges and future prospects. J. Environ. Manag. 190, 140–157 (2017)

    Article  Google Scholar 

  5. Salvia, R., Egidi, G., Vinci, S., Salvati, L.: Desertification risk and rural development in southern Europe: permanent assessment and implications for sustainable land management and mitigation policies. Land 8, 191–206 (2019)

    Article  Google Scholar 

  6. European Compost Network, 2019. Treatment of bio-waste in Europe. https://www.compostnetwork.info/policy/biowaste-in-europe/treatment-bio-waste-europe/ (accessed 30 December 2020).

  7. Bruni, C., Akyol, Ç., Cipolletta, G., Eusebi, A.L., Caniani, D., Masi, S., Colón, J., Fatone, F.: Decentralized community composting: past, present and future aspects of Italy. Sustainability-Basel 12, 3319 (2020)

    Article  Google Scholar 

  8. Landolfo, P., Musmeci, F.: Il compostaggio di comunità. Energia, Ambiente e Innovazione 5, 95–101 (2013)

    Google Scholar 

  9. Villar Comesaña, I., Alves, D., Mato, S., Romero, X.M., Varela, B.: Decentralized composting of organic waste in a European rural region: a case study in Allariz (Galicia, Spain). IntechOpen 4, 53–79 (2017)

    Google Scholar 

  10. Panaretou, V., Vakalis, S., Ntolka, A., Sotiropoulos, A., Moustakas, K., Malamis, D., Loizidou, M.: Assessing the alteration of physicochemical characteristics in composted organic waste in a prototype decentralized composting facility. Environ. Sci. Pollut. R. 26, 20232–20247 (2019)

    Article  Google Scholar 

  11. Arrigoni, J.P., Paladino, G., Garibaldi, L.A., Laos, F.: Inside the small-scale composting of kitchen and garden wastes: thermal performance and stratification effect in vertical compost bins. Waste Manage. 76, 284–293 (2018)

    Article  Google Scholar 

  12. Song, J.H., Murphy, R.J., Narayan, R., Davies, G.B.H.: Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B 364, 2127–2139 (2009)

    Article  Google Scholar 

  13. European Bioplastic, 2020. Bioplastics Facts and Figures. https://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf (accessed 1 January 2020).

  14. Wojnowska-Baryła, I., Kulikowska, D., Bernat, K.: Effect of bio-based products on waste management. Sustainability-Basel 12, 2088–2099 (2020)

    Article  Google Scholar 

  15. EN 13432:2002. Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packaging. European Committee for Standardization, Brussels, Belgium.

  16. Folino, A., Karageorgiou, A., Calabrò, P.S., Komilis, D.: Biodegradation of wasted bioplastics in natural and industrial environments: a review. Sustainability-Basel 12, 6030–6066 (2020)

    Article  Google Scholar 

  17. Utilitalia, 2020. La gestione e il recupero delle bioplastiche - Documento di posizionamento della Federazione approvato dal Direttivo Ambiente. https://www.utilitalia.it/dms/file/open/?e3da52c2-b501-498e-bc4c-2f0533ea0acc, in Italian (accessed 24 May 2021).

  18. Calabrò, P.S., Grosso, M.: Bioplastics and waste management. Waste Manage. 78, 800–801 (2018)

    Article  Google Scholar 

  19. Klauss, M., Bidlingmaier, W.: Biodegradable polymer packaging: practical experiences of the model project Kassel. In Proceedings of the 1st UK Conference and Exhibition on Biodegradable and Residual Waste Manage, Harrogate, UK, 18–19 February 2004; 382–388 (2004).

  20. Van Der Zee, M., Molenveld, K.: The fate of (compostable) plastic products in a full scale industrial organic waste treatment facility. Wageningen, ISBN 978–94–6395–310–8 (2020).

  21. Cafiero, L.M., Canditelli, M., Musmeci, F., Sagnotti, G., Tuffi, R.: Assessment of disintegration of compostable bioplastic bags by management of electromechanical and static home composters. Sustainability-Basel 13, 263–279 (2021)

    Article  Google Scholar 

  22. Decreto del Ministero delle politiche agricole e forestali del 10 Luglio 2013. Aggiornamento degli allegati del Decreto Legislativo 29 aprile 2010, n. 75, concernente il riordino e la revisione della disciplina in materia di fertilizzanti. GU Serie Generale n. 218 del 17–09–2013 Istituto Poligrafico e Zecca dello Stato: Roma.

  23. ANPA, 2001. Metodi di analisi del compost. Manuali e Linee Guida 3/2001, 1st ed. Roma.

  24. APAT, 2003. Metodi microbiologici di analisi del compost. Manuali e Linee Guida 20/2003. 1st ed. Roma.

  25. Bartlett, R.J., James, B.R.: Chromium, in: D.L. Sparks, A.L. Page, et al. (Eds.), Methods of Soil Analysis. Part 3 – chemical methods. SSSA Book Series, ASA Inc., Madison, Wisconsin (1996).

  26. ISTISAN, 2014. Metodi analitici di riferimento per la valutazione microbiologica dei fanghi di depurazione e di matrici ad essi assimilabili. Rapporti ISTISAN 14/18. 1st ed. Roma.

  27. UNI 10780:1998. Compost - Classificazione, requisiti e modalità di impiego. Ente Italiano di Normazione, Milano, Italia.

  28. OECD, 1984. Guideline for testing of chemicals. Terrestrial Plants, Growth Test. http://www.oecd.org/chemicalsafety/risk-assessment/1948285.pdf (accessed 31 May 2021).

  29. Manu, M.K., Kumar, R., Garg, A.: Decentralized composting of household wet biodegradable waste in plastic drums: Effect of waste turning, microbial inoculum and bulking agent on product quality. J. Clean. Prod. 226, 233–241 (2019)

    Article  Google Scholar 

  30. Smith, M.M., Aber, J.D.: Energy recovery from commercial-scale composting as a novel waste management strategy. Appl. Energ. 211, 194–199 (2018)

    Article  Google Scholar 

  31. Sirini, P., Tchobanoglous, G., Noto La Diega, R.C.: Ingegneria dei rifiuti solidi. McGraw-Hill, Milano, p. 1132 (2010).

  32. Chukwujindu Iwegbue, M.A., Egun, A.C., Emuh, F.N., Isirimah, N.O.: Compost maturity evaluation and its significance to agriculture. Pak. J. Biol. Sci. 9, 2933–2944 (2006)

    Article  Google Scholar 

  33. Canditelli, M., Coronidi, M., Faustini, N., Gravagno, M., Musmeci, F., Trinca, E., Alisi, C., Montereali, M.R., Manzo, S., Salluzzo, A.: Compostaggio di comunità: gestione sostenibile degli scarti umidi da valorizzare in loco. Sardinia, 15th International Waste Management and Landfill Symposium (2015).

  34. ANPA, 2002. Il Recupero di Sostanza Organica dai Rifiuti per la Produzione di Ammendanti di Qualità. Manuali e Linee Guida 7/2002, 1st ed. Roma.

  35. ISO 16929:2019. Determination of the Degree of Disintegration of Plastic Materials under Defined Composting Conditions in a Pilot-Scale Test. International Organization for Standardization, 3rd ed., Geneva.

  36. Rynk, R.: On-Farm Composting Handbook. Northeast Regional Agricultural Engineering Service, Cooperative Extension Service. Ithaca, New York, EEUU, p. 186 (1992).

  37. Luo, Y., Liang, J., Zeng, G., Chen, M., Mo, D., Li, G., Zhang, D.: Seed germination test for toxicity evaluation of compost: its roles, problems and prospects. Waste Manag. 71, 109–114 (2018)

    Article  Google Scholar 

  38. Consorzio Italiano Compostatori, 2013. Rapporto Annuale, Roma.

  39. Storino, F., Arizmendiarrieta, J.S., Irigoyen, I., Muro, J., Aparicio-Tejo, P.M.: Meat waste as feedstock for home composting: Effects on the process and quality of compost. Waste Manage. 56, 53–62 (2016)

    Article  Google Scholar 

  40. Storino, F., Menéndez, S., Muro, J., Aparicio-Tejo, P.M., Irigoyen, I.: Effect of feeding regime on composting in bins. Compost. Sci. Util. 25, 71–81 (2016)

    Article  Google Scholar 

  41. Butler, T.A., Sikora, L.J., Sterinbilber, P.M., Douglas, L.W.: Compost age and sample storage effect on maturity indicator of biosoid. J. Environ. Qual. 30, 141–148 (2001)

    Article  Google Scholar 

  42. Papadopoulos, A.E., Stylianou, M.A., Michalopoulos, C.P., Moustakas, K.G., Hapeshis, K.M., Vogiatzidaki, E.E.I., Loizidou, M.D.: Performance of a new household composter during in-home testing. Waste Manage. 29, 204–213 (2009)

    Article  Google Scholar 

  43. Bernal, M.P., Alburquerque, J.A., Moral, R.: Composting of animal manures and chemical criteria for compost maturity assessment A review. Bioresour. Technol. 100, 5444–5453 (2009)

    Article  Google Scholar 

  44. Barrena, R., Font, X., Gabarrell, X., Sánchez, A.: Home composting versus industrial composting: Influence of composting system on compost quality with focus on compost stability. Waste Manage. 34, 1109–1116 (2014)

    Article  Google Scholar 

  45. Garcia, A.C., Olaetxea, M., Santos, L.A., Mora, V., Baigorri, R., Fuentes, M., Zamarreño, A.M., Berbara, R.L.L., Garcia-Mina, J.M.: Involvement of hormone-and ROS-signaling pathways in the beneficial action of humic substances on plants growing under normal and stressing conditions. BioMed Res. Int. 2016, 1–13 (2016)

    Google Scholar 

  46. Robin, A.H.K., Matthew, C., Uddin, M.J., Bayazid, K.N.: Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. J. Exp. Bot. 67(12), 3719–3729 (2016)

    Article  Google Scholar 

  47. Balestri, E., Menicagli, V., Ligorini, V., Fulignati, S., Raspolli Galletti, A.M., Lardicci, C.: Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test. Ecol. Indic. 102, 569–580 (2019)

    Article  Google Scholar 

  48. Barbale, M., Chinaglia, S., Gazzilli, A., Pischedda, A., Pognani, M., Tosin, M., Degli-Innocenti, F.: Hazard profiling of compostable shopping bags Towards an ecological risk assessment of littering. Polym. Degrad. Stabil. 188, 109592–109602 (2021)

    Article  Google Scholar 

Download references

Funding

This study was not funded by any institution or any other entity.

Author information

Authors and Affiliations

Authors

Contributions

MC: Conceptualization, Investigation, Methodology. LMC: Validation, Writing—Review & Editing. CMC: Investigation. PGL: Resources, Supervision. SM: Investigation, Writing—Review & Editing. MRM: Investigation. AS: Investigation. SS: Investigation. R. Tuffi: Writing—Original Draft Preparation, Writing—Review & Editing.

Corresponding author

Correspondence to R. Tuffi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canditelli, M., Cafiero, L.M., Cellamare, C.M. et al. Use of Bioplastic Bags for the Collection of Organic Waste in an Electromechanical Composter: Effects on the Facility Management and the Compost Quality. Waste Biomass Valor 13, 2399–2410 (2022). https://doi.org/10.1007/s12649-021-01637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01637-1

Keywords

Navigation