Skip to main content

Advertisement

Log in

Spent Mushroom Substrates Valorization via Brand New Multirecycled Polyfunctional Biologics Producing on Them

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Contemporary technologies although use various waste in polyfunctional biologics producing are high-cost and not waste-free. The new approaches in valorization waste based on biorecycling in lengthening the food chain and expanding the food network are eligible. The research goal was to develop new multiconversion biotechnology for the polyfunctional biologics’ production. Methods of semi-industrial liquid- and solid-phase sequential edible mushrooms and biologics producer strains cultivating were used as well as serial dilutions method for titer determining, quantity and quality of inoculums and preparative forms assessing, the content assessing methods for crude protein and basic polysaccharides, statistical processing. There have been developed the know-hows for the brand new 15 Multirecycled substrate-associated polyfunctional biologics (MSAPB) production. New substrates are developed for the producer strains growth via double spent mushroom substrates conversion. Their valorization already was observed in mushrooms double cultivation. Then 22 producer strains demonstrated high mushroom wastes’ multibioconversion efficiency as valorized bioinoculants. The MSAPB experimental samples shelf life was optimized in 18 months with preserving the producer strains viability and target activity. Such biologics put into the soil as bioinoculants and biopesticides for crop protection can restore and improve soil’s suppressiveness by optimizing the microbial complex in the agricultural plants’ rhizosphere.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Royse, D.J.: A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia and Flammulina. In: Singh, M. (ed.) Proc. of 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), Volume I & II, New Delhi, India, pp. 1–6. ICAR-Directorate of Mushroom Research (2014)

  2. Hanafi, F.H.M., Rezania, S., Taib, S.M., Din, M.F.M., Yamauchi, M., Sakamoto, M., Hara, H., Park, J., Ebrahimi, S.S.: Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview. J. Mater. Cycles Waste Manag. (2018). https://doi.org/10.1007/s10163-018-0739-0

    Article  Google Scholar 

  3. Royse, D.J.: Recycling of spent shiitake substrate for production of the oyster mushroom, Pleurotus sajor-caju. Appl. Microbiol. Biotechnol. (1992). https://doi.org/10.1007/BF00174464

    Article  Google Scholar 

  4. Gern, R., Libardi, N., Patricio, G., Wisbeck, E., Chaves, M.B., Furlan, S.A.: Cultivation of Agaricus blazei on Pleurotus spp. spent substrate. Braz. Arch. Biol. Technol. (2010). https://doi.org/10.1590/S1516-89132010000400024

    Article  Google Scholar 

  5. Gonani, Z., Riahi, H., Sharifi, K.: Impact of using leached spent mushroom compost as a partial growing media for horticultural plants. J. Plant Nutr. (2011). https://doi.org/10.1080/01904167.2011.536876

    Article  Google Scholar 

  6. Gonzalez-Matute, R., Figlas, D., Curvetto, N.: Agaricus blazei production on non-composted substrates based on sunflower seed hulls and spent oyster mushroom substrate. World J. Microbiol. Biotechnol. 27(6), 1331–1339 (2011). https://doi.org/10.1007/s11274-010-0582-5

    Article  Google Scholar 

  7. Gea, F.J., Santos, M., Dianez, F., Tello, J.C., Navarro, M.J.: Effect of spent mushroom compost tea on mycelial growth and yield of button mushroom (Agaricus bisporus). World J. Microbiol. Biotechnol. (2012). https://doi.org/10.1007/s11274-012-1081-7

    Article  Google Scholar 

  8. Gea, F.J., Carrasco, J., Dianez, F., Santos, M., Navarro, M.J.: Control of dry bubble disease (Lecanicillium fungicola) in button mushroom (Agaricus bisporus) by spent mushroom substrate tea. Eur. J. Plant Pathol. (2014). https://doi.org/10.1007/s10658-013-0344-y

    Article  Google Scholar 

  9. Parada, R.Y., Murakami, S., Shimomura, N., Otani, H.: Suppression of fungal and bacterial diseases of cucumber plants by using the spent mushroom substrate of Lyophyllum decastes and Pleurotus eryngii. J. Phytopathol. (2012). https://doi.org/10.1111/j.1439-0434.2012.01916.x

    Article  Google Scholar 

  10. Pardo-Giménez, A., Picornell Buendía, M.R., de Juan Valero, J.A., Pardo-González, J.E., Cunha, Z.D.: Cultivation of Pleurotus ostreatus using supplemented spent oyster mushroom substrate. Acta Hortic (2012). https://doi.org/10.17660/ActaHortic.2012.933.33

    Article  Google Scholar 

  11. Riahi, H., Hashemia, M., Sharilib, K.: The effect of spent mushroom compost on Lecanicillium fungicola in vivo and in vitro. Phytopathol. Plant Protect. (2012). https://doi.org/10.1080/03235408.2012.721684

    Article  Google Scholar 

  12. Ashrafi, R., Mian, M.H., Rahman, M.M., Jahiruddin, M.: Recycling of spent mushroom substrate for the production of Oyster mushroom. Res. Biotechnol. 5(2), 13–21 (2014)

    Google Scholar 

  13. Rinker, D.L.: Spent mushroom substrate uses: technology and applications. In: Zied, D.C., Pardo-Gimenez, A. (eds.) Edible and medicinal mushrooms: technology and applications, 1st edn., pp. 427–454. John Wiley and Sons Ltd., Chichester (2017). https://doi.org/10.1002/9781119149446.ch20

    Chapter  Google Scholar 

  14. Jin, Y., Teng, C., Yu, S., Song, T., Dong, L., Liang, J., Bai, X., Liu, X., Hu, X., Qu, J.: Batch and fixed-bed biosorption of Cd (II) from aqueous solution using immobilized Pleurotus ostreatus spent substrate. Chemosphere (2018). https://doi.org/10.1016/j.chemosphere.2017.08.154

    Article  Google Scholar 

  15. Othman, N.Z., Sarjuni, M.N.H., Rosli, M.A., Nadri, M.H., Yeng, L.H., Ying, O.P., Sarmidi, M.R.: Spent mushroom substrate as biofertilizer for agriculture application. In: Zakaria, Z.A., Boopathy, R., Dib, J.R. (eds.) Valorization of agro-industrial residues – volume I: biological approaches. Applied environmental science and engineering for sustainable future, pp. 37–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39137-9

    Chapter  Google Scholar 

  16. Babitskaya, V.G., Shcherba, V.V.: Features of lignin degradation of natural polymers by xylotrophs and soil saprotrophs. Microbiology 1, 65–72 (1994). (in Russian)

    Google Scholar 

  17. Abd-Rasib, N.A., Zakaria, Z., Tompang, M.F., Abdul Rahman, R., Othman, H.: Characterization of biochemical composition for different types of spent mushroom substrate in Malaysia. Malays. J. Anal. Sci. 19(1), 41–45 (2015)

    Google Scholar 

  18. Naraian, R., Sahu, R.K., Kumar, S., Garg, S.K., Singh, C.S., Kanaujia, R.S.: Influence of different nitrogen rich supplements during cultivation of Pleurotus florida on corn cob substrate. Environmentalist (2009). https://doi.org/10.1007/s10669-008-9174-4

    Article  Google Scholar 

  19. Koutrotsios, G., Mountzouris, K.C., Chatzipavlidis, I., Zervakis, G.I.: Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi – assessment of their effect on the final product and spent substrate properties. Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2014.03.121

    Article  Google Scholar 

  20. Randive, S.D.: Cultivation and study of growth of oyster mushroom on different agricultural waste substrate and its nutrient analysis. Adv. Appl. Sci. Res. 3(4), 1938–1949 (2012)

    Google Scholar 

  21. Baek, Y.C., Kim, M.S., Reddy, K.E., Oh, Y.K., Jung, Y.H., Yeo, J.M., Choi, H.: Rumen fermentation and digestibility of spent mushroom (Pleurotus ostreatus) substrate inoculated with Lactobacillus brevis for Hanwoo steers. Rev. Colomb. Cienc. Pecu. (2017). https://doi.org/10.17533/udea.rccp.v30n4a02

    Article  Google Scholar 

  22. Luo, Z., Sun, Y., Zhou, X., Baig, S.A., Hu, B., Xu, X.: Composition variability of spent mushroom substrates during continuous cultivation, composting process and their effects on mineral nitrogen transformation in soil. Geoderma (2017a). https://doi.org/10.1016/j.geoderma.2017.07.033

    Article  Google Scholar 

  23. Luo, Z., Sun, Y., Bian, S., Baig, S.A., Hu, B., Xu, X.: Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar. Chemosphere (2017). https://doi.org/10.1016/j.chemosphere.2016.11.044

    Article  Google Scholar 

  24. Luo, X., Yuan, X., Wang, S., Sun, F., Hou, Z., Hu, Q., Zhai, L., Cui, Z., Zou, Y.: Methane production and characteristics of the microbial community in the co-digestion of spent mushroom substrate with dairy manure. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2017.11.088

    Article  Google Scholar 

  25. Pergola, M., Persiani, A., Palese, A.M., Di Meo, V., Pastore, V., D’Adamo, C., Celano, G.: Composting: the way for sustainable agriculture. Appl. Soil Ecol. (2018). https://doi.org/10.1016/j.apsoil.2017.10.016

    Article  Google Scholar 

  26. Sendi, H., Mohamed, M.T., Anwar, M.P., Saud, H.M.: Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) production. Sci. World J. (2013). https://doi.org/10.1155/2013/258562

    Article  Google Scholar 

  27. Meng, X., Liu, B., Xi, C., Luo, X., Yuan, X., Wang, X., Zhu, W., Wang, H., Cui, Z.: Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. Bioresour. Technol. (2018). https://doi.org/10.1016/j.biortech.2017.09.077

    Article  Google Scholar 

  28. Novikova, I.I., Boikova, I.V., Pavlyushin, V.A., Zeiruk, V.N., Vasilyeva, S.V., Derevyagina, M.K.: Biological efficiency of preparative forms based on the microbes-antagonists for potato protection against diseases at vegetation and storage. Plant Prot. News 86(4), 12–19 (2015). (in Russian)

    Google Scholar 

  29. Pavlyusin, V.A., Novikova, I.I., Boikova, I.V.: Microbiological control in phytosanitary optimization technologies for agroecosystems: research and practice (review). Agric. Biol. (2020). https://doi.org/10.15389/agrobiology.2020.3.421eng

    Article  Google Scholar 

  30. Anwer, M.D.A.: Status of biopesticides and biocontrol agents in agriculture: an overview. In: Anwer, M.D.A. (ed.) Biopesticides and bioagents: novel tools for pest management, pp. 12–26. Apple Academic Press Inc., Waretown (2017). https://doi.org/10.1201/9781315365558

    Chapter  Google Scholar 

  31. Jalilov, F.S.: Biological preparations against plant diseases. Potato and Veg. (2018). https://doi.org/10.25630/PAV.2018.8.18269

    Article  Google Scholar 

  32. Titova, J.A.: Methodology for obtaining the multibiorecycled biologics for plant protection. In: Pavlyushin, V.A. (ed.). Phytosanitary optimization of agroecosystems – Volume II, pp. 396–400. S-Petersburg: FSBSI VIZR (2013) (in Russian)

  33. Titova, J.A., Krasnobaeva, I.L.: Multiconversion biological products for plant protection and the possibility of their use in organic farming. Technol. Tech. Means Mech. Prod. Crop Livest. Product. (2019). https://doi.org/10.24411/0131-5226-2019-10161

    Article  Google Scholar 

  34. Titova, J.A., Novikova, I.I., Boikova, I.V., Pavlyushin, V.A., Krasnobaeva, I.L.: New generation multi-bioconversion solid-phase biological products based on Bacillus subtilis and Trichoderma asperellum increase the efficiency of potato protection against late blight. Agric. Biol. (2019). https://doi.org/10.15389/agrobiology.2019.5.1002eng

    Article  Google Scholar 

  35. Kolombet, L.V.: Biotechnological problems of creating preparations for plant growing based on fungi of the genus Trichoderma. Appl. Toxicol. 3(7), 48–55 (2012). (in Russian)

    Google Scholar 

  36. Tuhy, L., Samoraj, M., Witkowska, Z., Rusek, P., Chojnacka, K.: Conversion of spent mushroom substrate into micronutrient fertilizer via biosorption in a pilot plant. Ecol. Eng. (2015). https://doi.org/10.1016/j.ecoleng.2015.09.032

    Article  Google Scholar 

  37. Orluchukwu, J.A., Mac-Aboh, A.R., Omovbude, S.: Effect of different rates of spent mushroom substrate on the growth and yield of fluted pumpkin (Telfaira occidentalis HOOK. F) in South-South, Nigeria. Nat. Sci. (2016). https://doi.org/10.7537/marsnsj14031606

    Article  Google Scholar 

  38. Owaid, M.N., Abed, I.A., Al-Saeedi, S.S.: Applicable properties of the bio-fertilizer spent mushroom substrate in organic systems as a byproduct from the cultivation of Pleurotus spp. Inf. Process Agric. (2017). https://doi.org/10.1016/j.inpa.2017.01.001

    Article  Google Scholar 

  39. Experimental mycology methods: a handbook. Nauk. dumka, Kiev (1982) (in Russian)

  40. Peacock, J.L., Peacock, P.J.: Oxford handbook of medical statistics. Oxford University Press (2011). https://doi.org/10.1093/med/9780199551286.001.0001

  41. Petrie, A., Sabin, C.: Medical statistics at a glance. Wiley Blackwell, Hoboken (2019)

    MATH  Google Scholar 

  42. Jensen, D.F., Karlsson, M., Vannacci, G.: Biological control using microorganisms as an alternative to disease resistance. In: Plant pathogen resistance biotechnology, pp. 341–363 (2016). https://doi.org/10.1002/9781118867716.ch18

  43. Jasinska, A.: Spent mushroom compost (SMC) – retrieved added value product closing loop in agricultural production. Acta Agrar. Debr. (2018). https://doi.org/10.34101/actaagrar/150/1715

    Article  Google Scholar 

  44. Reshetnikova, I.A.: Lignin destruction by xylotrophic macromycetes. The accumulation of selenium and the fractionation of its isotopes by microorganisms. Moscow (1997) (in Russian)

  45. Čvančarová, M., Křesinová, Z., Filipová, A., Covino, S., Cajthaml, T.: Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere (2012). https://doi.org/10.1016/j.chemosphere.2012.03.107

    Article  Google Scholar 

  46. Kvitkina, A.K., Larionova, A.A., Dudareva, D.M., Byhovets, S.S.: Effect of C: N ratio and external and internal nitrogen on mineralization rate of corn residues. Theor. Appl. Ecol. (2017). https://doi.org/10.25750/1995-4301-2017-2-078-083

    Article  Google Scholar 

  47. Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., Shen, Y.: Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2012.02.099

    Article  Google Scholar 

  48. Faria, M.R., Wraight, S.P.: Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control. (2007). https://doi.org/10.1016/j.biocontrol.2007.08.001

    Article  Google Scholar 

  49. Latifian, M., Rad, B., Amani, M., Rahkhodaei, E.: Mass production of entomopathogenic fungi Beauveria bassiana (Balsamo) by using agricultural products based on liquid-solid diphasic method for date palm pest control. Int. J. Agri. Crop. Sci. 5(19), 2337–2341 (2013)

    Google Scholar 

  50. State catalog of pesticides and agrochemicals permitted for use in Russian Federation territory. Moscow (2020) (in Russian)

  51. Ivanov, A.I., Korjagin, Y.V., Anokhin, R.V.: Using waste substrate as organic fertilizer – the most important link in recycling technology of mushrooms growing. XXI Century Plus 27(5), 120–128 (2015). (in Russian)

    Google Scholar 

  52. Fomin, I.V., Knishatkin, S.A.: Production of organic fertilizer in the form of granules from the spent oyster mushroom substrate. Concept 11, 2791–2795 (2016). (in Russian)

    Google Scholar 

  53. Polskikh, S., Melkumova, E., Fediukina, J., Humberdiyeva, K.: Influence of the fulfilled substrate blocks of the oyster mushroom of ordinary Pleurotus ostreatus Fr. Kumm. on formation of the crop of late grades of potatoes. Bull. Michurinsk State Agrar. Univ. 2, 31–36 (2015). (in Russian)

    Google Scholar 

  54. Jeyarajan, R., Nakkeeran, S.: Exploitation of microorganisms and viruses as biocontrol agents for crop disease management. In: Upadhyay, R.K., Mukerji, K.G., Chamola, B.P. (eds.) Biocontrol Potential and its exploitation in sustainable agriculture, pp. 95–116. Springer, Boston, MA (2000). https://doi.org/10.1007/978-1-4615-4209-4_8

    Chapter  Google Scholar 

Download references

Acknowledgements

The author is grateful to the FSBSI ARI Testing Laboratory staff for their invaluable research assistance. The author very much appreciates the timely assistance of her personal sponsors and editors Valeria and Christopher Robert Hearsey, Oleg Darakov.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Anatolievna Titova.

Ethics declarations

Conflict of interest

The author declares that she has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titova, J.A. Spent Mushroom Substrates Valorization via Brand New Multirecycled Polyfunctional Biologics Producing on Them. Waste Biomass Valor 13, 1089–1100 (2022). https://doi.org/10.1007/s12649-021-01552-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01552-5

Keywords

Navigation