Skip to main content
Log in

Evolution of Physico-Chemical and Microbiological Parameters During Large-Scale Coffee-Pulp Silage

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Coffee-pulp (CP) is an agricultural by-product produced in tropical regions. The high moisture and high carbohydrates content promote rapid spoilage by microorganisms together with detrimental consequences for the environment. Proper conservation of this biomass could be useful as a substrate for other processes. The feasibility of CP silage without any additive was studied at a large scale. Four silages were carried out each one containing 4.5 t of CP.

Methods

Coffee-pulp silage was monitored during three months and samples were collected at regular intervals of time. Samples were used to determine microbiological parameters (lactic acid bacteria and yeasts population) and physicochemical variables like dry matter, pH, water-soluble carbohydrates, organic acids and ethanol.

Results

In all the 4 silages carried out, a high level of lactic acid was rapidly reached, decreasing the pH. Additionally, acetic and propionic acids were produced inducing an antifungal effect. Limited ethanol production was observed in the first days of silage due to the yeast´s activity. The internal temperature of silos rose indicating residual aerobic activity. Stable silage conditions in terms of high lactic acid concentration (> 8% DM), low pH (3.9) and no butyric acid production, were established during the first 72 h. These CP silage variables were kept constant after 30 days and until 90 days.

Conclusion

Coffee-pulp is a suitable agricultural by-product for in situ conservation at large-scale silage process without addition of inoculum.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the authors declare that all data and materials as well as software application or custom code support their published claims and comply with field standards.

Code availability

Not applicable for that section.

References

  1. Elías, L.G.: Chemical composition of coffee-berry by-products. In: Braham, J.E., Bressani, R. (eds.) Coffee Pulp: Composition, Technology and Utilization. INDRC, Ottawa (1979)

    Google Scholar 

  2. Fan, L., Pandey, A., Mohan, R., Soccol, C.R.: Use of various coffee industry residues for the cultivation of Pleurotus ostreatus in solid state fermentation. Acta Biotechnol. 20, 41–52 (2000). https://doi.org/10.1002/abio.370200108

    Article  Google Scholar 

  3. Coffee Development Report 2019. International Coffee Organization.http://www.internationalcoffeecouncil.org/media/coffeeDevelopmentReport.pdf (2019). Accessed 24 Apr 2021

  4. Gurram, R., Al-Shannag, M., Knapp, S., Das, T., Singsaas, E., Alkasrawi, M.: Technical possibilities of bioethanol production from coffee pulp: a renewable feedstock. Clean Technol. Environ. Policy 18, 269–278 (2016). https://doi.org/10.1007/s10098-015-1015-9

    Article  Google Scholar 

  5. Pandey, A., Soccol, C.R., Nigam, P., Brand, D., Mohan, R., Roussos, S.: Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem. Eng. J. 6, 153–162 (2000). https://doi.org/10.1016/S1369-703X(00)00084-X

    Article  Google Scholar 

  6. Perraud-Gaime, I., Saucedo-Castañeda, G., Augur, C., Roussos, S.: Adding value to coffee solid by-products through biotechnology. In: Sera, T., Soccol, C.R., Pandey, A., Roussos, S. (eds.) Coffee Biotechnology and Quality, pp. 437–446. Springer, Dordrecht (2000)

    Chapter  Google Scholar 

  7. Godoy, M.G., Amorim, G.M., Barreto, M.S., Freire, D.M.G.: Agricultural residues as animal feed. In: Ashok, P., Christian, L. (eds) Current Developments in Biotechnology and Bioengineering. pp. 235–256. Elsevier, Amsterdam (2018)

  8. Moreau, Y., Arredondo, J.-L., Perraud-Gaime, I., Roussos, S.: Dietary utilisation of protein and energy from fresh and ensiled coffee pulp by the Nile tilapia, Oreochromis niloticus. Braz. Arch. Biol. Technol. 46, 223–231 (2003). https://doi.org/10.1590/S1516-89132003000200014

    Article  Google Scholar 

  9. Ulloa Rojas, J.B., Verreth, J.A.J.: Growth of Oreochromis aureus fed with diets containing graded levels of coffee pulp and reared in two culture systems. Aquaculture 217, 275–283 (2003). https://doi.org/10.1016/S0044-8486(02)00273-9

  10. Orozco, F.H., Cegarra, J., Trujillo, L.M., Roig, A.: Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biol. Fertil. Soils 22, 162–166 (1996). https://doi.org/10.1007/BF00384449

    Article  Google Scholar 

  11. Raphael, K., Velmourougane, K.: Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species. Biodegradation 22, 497–507 (2011). https://doi.org/10.1007/s10532-010-9422-4

    Article  Google Scholar 

  12. Murthy, P.S., Madhava Naidu, M., Srinivas, P.: Production of α-amylase under solid-state fermentation utilizing coffee waste. J. Chem. Technol. Biotechnol. 84, 1246–1249 (2009). https://doi.org/10.1002/jctb.2142

    Article  Google Scholar 

  13. Murthy, P.S., Naidu, M.M.: Production and application of Xylanase from Penicillium sp. utilizing coffee by-products. Food Bioprocess. Technol. 5, 657–664 (2012). https://doi.org/10.1007/s11947-010-0331-7

    Article  Google Scholar 

  14. Nava, I., Perraud-Gaime, I., Huerta-Ochoa, S., Favela-Torres, E., Saucedo-Castañeda, G.: Penicillium commune spore production in solid-state fermentation of coffee pulp at laboratory scale and in a helical ribbons rotating reactor. J. Chem. Technol. Biotechnol. 81, 1760–1766 (2006). https://doi.org/10.1002/jctb.1599

    Article  Google Scholar 

  15. Heeger, A., Kosińska-Cagnazzo, A., Cantergiani, E., Andlauer, W.: Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem. 221, 969–975 (2017). https://doi.org/10.1016/j.foodchem.2016.11.067

    Article  Google Scholar 

  16. Llauradó, G., Morris, H.J., Lebeque, Y., Gutiérrez, A., Fontaine, R., Bermúdez, R.C., Perraud-Gaime, I.: Phytochemical screening and effects on cell-mediated immune response of Pleurotus fruiting bodies powder. Food Agric. Immunol. 24, 295–304 (2013). https://doi.org/10.1080/09540105.2012.686988

    Article  Google Scholar 

  17. Morris, H., Beltrán, Y., Llauradó, G., Batista, P., Perraud-Gaime, I., Garcia, N., Moukha, S., Bermúdez, R., Cos, P., Hernández, E., Diez, J.: Mycelia from Pleurotus sp. (oyster mushroom): a new wave of antimicrobials, anticancer and antioxidant bio-ingredients. Int. J. Phytocosmet. Nat. Ingred 4, 3 (2017). https://doi.org/10.15171/ijpni.2017.03

  18. Martínez-Carrera, D., Aguilar, A., Martínez, W., Bonilla, M., Morales, P., Sobal, M.: Commercial production and marketing of edible mushrooms cultivated on coffee pulp in Mexico. In: Sera, T., Soccol, C.R., Pandey, A., Roussos, S. (eds.) Coffee Biotechnology and Quality, pp. 471–488. Springer, Dordrecht (2000)

    Chapter  Google Scholar 

  19. Salmones, D., Mata, G., Waliszewski, K.: Comparative culturing of spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation. Bioresour. Technol. 96, 537–544 (2005). https://doi.org/10.1016/j.biortech.2004.06.019

  20. Perraud-Gaime, I., Saucedo-Castañeda, G., Martinez-Carrera, D.: Natural microorganisms of the fresh coffee pulp. Micol. Neotrop. Apl. 6, 95–103 (1993)

    Google Scholar 

  21. Barcelo, J.M., Barcelo, R.C.: Post-harvest practices linked with ochratoxin A contamination of coffee in three provinces of Cordillera Administrative Region, Philippines. Food Addit. Contam. Part A 35, 328–340 (2018). https://doi.org/10.1080/19440049.2017.1393109

    Article  Google Scholar 

  22. Aguilera, A., Pérez-Gil, F., Grande, D., de la Cruz, I., Juárez, J.: Digestibility and fermentative characteristics of mango, lemon and corn stover silages with or without addition of molasses and urea. Small Rumin. Res. 26, 87–91 (1997). https://doi.org/10.1016/S0921-4488(96)01001-2

    Article  Google Scholar 

  23. Ni, K., Wang, F., Zhu, B., Yang, J., Zhou, G., Pan, Y., Tao, Y., Zhong, J.: Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 238, 706–715 (2017). https://doi.org/10.1016/j.biortech.2017.04.055

    Article  Google Scholar 

  24. Weinberg, Z.G., Ashbell, G.: Engineering aspects of ensiling. Biochem. Eng. J. 13, 181–188 (2003). https://doi.org/10.1016/S1369-703X(02)00130-4

    Article  Google Scholar 

  25. Liu, B., Huan, H., Gu, H., Xu, N., Shen, Q., Ding, C.: Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresour. Technol. 273, 212–219 (2019). https://doi.org/10.1016/j.biortech.2018.10.041

    Article  Google Scholar 

  26. Woolford, M.K.: The detrimental effects of air on silage. J. Appl. Bacteriol. 68, 101–116 (1990). https://doi.org/10.1111/j.1365-2672.1990.tb02554.x

    Article  Google Scholar 

  27. Saucedo-Castañeda, G., Raimbault, M., Viniegra-González, G.: Energy of activation in cassava silages. J. Sci. Food Agric. 53, 559–562 (1990). https://doi.org/10.1002/jsfa.2740530413

    Article  Google Scholar 

  28. MacDonald, P.: The Biochemistry of Silage. Wiley, Chichester (1981)

    Google Scholar 

  29. Kung, L., Shaver, R.: Interpretation of silage fermentation analysis report. Focus Forage. 3, 1–5 (2001)

    Google Scholar 

  30. Saucedo-Castañeda, G.C., González, P.B., Revah, S.M., Viniegra, G.G., Raimbault, M.: Effect of lactobacilli inoculation on cassava (Manihot esculenta) silage: Fermentation pattern and kinetic analysis. J. Sci. Food Agric. 50, 467–477 (1990). https://doi.org/10.1002/jsfa.2740500405

    Article  Google Scholar 

  31. Muck, R.E.: Factors influencing silage quality and their implications for management. J. Dairy Sci. 71, 2992–3002 (1988). https://doi.org/10.3168/jds.S0022-0302(88)79897-5

    Article  Google Scholar 

  32. Bohkenfor, B., Fonseca, H.: Calidad de ensilado con pulpa de café conteniendo diferentes niveles de humedad y varios aditivos. In: Ruiz, M. E. (eds.) Informe Final. Primera Reunión Internacional sobre la Utilización de Subproductos del Café en la Alimentación Animal y otras Aplicaciones Agrícolas e Industriales. pp. 41–42. Turrialba, Costa Rica (1974)

  33. Aguirre-Fernandez, P.A., Acosta-Pinto, L.M., Cardozo-Corzo, L.D., Rodríguez-Arenas, S.A., Corredor-Sánchez, G.A.: Nutritional evaluation of silage with coffee (Coffea arabica L.) cherry for ruminant supplementation. Acta Agron. 67, 326–332 (2018). https://doi.org/10.15446/acag.v67n2.66563

  34. Porres, C., Alvarez, D., Calzada, J.: Caffeine reduction in coffee pulp through silage. Biotechnol. Adv. 11, 519–523 (1993). https://doi.org/10.1016/0734-9750(93)90020-N

    Article  Google Scholar 

  35. Ashbell, G., Weinberg, Z.G.: Top silage losses in horizontal silos. Can. Agric. Eng. 34(2), 171 (1992)

    Google Scholar 

  36. Keshri, J., Chen, Y., Pinto, R., Kroupitski, Y., Weinberg, Z.G., Sela Saldinger, S.: Bacterial dynamics of wheat silage. Front. Microbiol. 10, 1532 (2019). https://doi.org/10.3389/fmicb.2019.01532

    Article  Google Scholar 

  37. Weinberg, Z.G., Szakacs, G., Ashbell, G., Hen, Y.: The effect of temperature on the ensiling process of corn and wheat. J. Appl. Microbiol. 90, 561–566 (2001). https://doi.org/10.1046/j.1365-2672.2001.01276.x

    Article  Google Scholar 

  38. Danner, H., Madzingaidzo, L., Holzer, M., Mayrhuber, L., Braun, R.: Extraction and purification of lactic acid from silages. Bioresour. Technol. 75, 181–187 (2000). https://doi.org/10.1016/S0960-8524(00)00068-7

    Article  Google Scholar 

  39. Kung, L., Shaver, R.D., Grant, R.J., Schmidt, R.J.: Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033 (2018). https://doi.org/10.3168/jds.2017-13909

    Article  Google Scholar 

  40. Driehuis, F., Elferink, S.J.W.H.O., Spoelstra, S.F.: Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J. Appl. Microbiol. 87, 583–594 (1999). https://doi.org/10.1046/j.1365-2672.1999.00856.x

  41. Holzer, M., Mayrhuber, E., Danner, H., Braun, R.: The role of Lactobacillus buchneri in forage preservation. Trends Biotechnol. 21, 282–287 (2003). https://doi.org/10.1016/S0167-7799(03)00106-9

    Article  Google Scholar 

  42. Cabo, M.L., Braber, A.F., Koenraad, P.M.F.J.: Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor Is Due to acetic acid in the medium. J. Food Prot. 65, 1309–1316 (2002). https://doi.org/10.4315/0362-028X-65.8.1309

    Article  Google Scholar 

  43. Danner, H., Holzer, M., Mayrhuber, E., Braun, R.: Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 69, 562–567 (2003). https://doi.org/10.1128/AEM.69.1.562-567.2003

    Article  Google Scholar 

  44. Sebastian, S., Phillip, L.E., Fellner, V., Idziak, E.S.: Comparative assessment of bacterial inoculation and propionic acid treatment of aerobic stability and microbial populations of ensiled high-moisture ear corn. J. Anim. Sci. 74, 447 (1996). https://doi.org/10.2527/1996.742447x

    Article  Google Scholar 

  45. Schmidt, R.J., Hu, W., Mills, J.A., Kung, L.: The development of lactic acid bacteria and Lactobacillus buchneri and their effects on the fermentation of alfalfa silage. J. Dairy Sci. 92, 5005–5010 (2009). https://doi.org/10.3168/jds.2008-1701

    Article  Google Scholar 

  46. Queiroz, O.C.M., Ogunade, I.M., Weinberg, Z., Adesogan, A.T.: Silage review: foodborne pathogens in silage and their mitigation by silage additives. J. Dairy Sci. 101, 4132–4142 (2018). https://doi.org/10.3168/jds.2017-13901

    Article  Google Scholar 

  47. Zheng, Y., Yates, M., Aung, H., Cheng, Y.-S., Yu, C., Guo, H., Zhang, R., VanderGheynst, J., Jenkins, B.M.: Influence of moisture content on microbial activity and silage quality during ensilage of food processing residues. Bioprocess. Biosyst. Eng. 34, 987–995 (2011). https://doi.org/10.1007/s00449-011-0549-4

    Article  Google Scholar 

  48. Wilkinson, J.M., Davies, D.R.: The aerobic stability of silage: key findings and recent developments. Grass Forage Sci. 68, 1–19 (2013). https://doi.org/10.1111/j.1365-2494.2012.00891.x

    Article  Google Scholar 

  49. Han, K.J., Collins, M., Vanzant, E.S., Dougherty, C.T.: Bale density and moisture effects on alfalfa round bale silage. Crop Sci. 44, 914 (2004). https://doi.org/10.2135/cropsci2004.0914

    Article  Google Scholar 

  50. Vissers, M.M.M., Driehuis, F., Te Giffel, M.C., De Jong, P., Lankveld, J.M.G.: Concentrations of butyric acid bacteria spores in silage and relationships with aerobic deterioration. J. Dairy Sci. 90, 928–936 (2007). https://doi.org/10.3168/jds.S0022-0302(07)71576-X

    Article  Google Scholar 

  51. Pfeiffer, T., Morley, A.: An evolutionary perspective on the Crabtree effect. Front. Mol. Biosci. (2014). https://doi.org/10.3389/fmolb.2014.00017

    Article  Google Scholar 

  52. Perraud-Gaime, I., Roussos, S.: Preservation of coffee pulp by ensilage: influence of biological additives. In: Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-Gonzalez, G. (eds.) Advances in Solid State Fermentation, pp. 193–208. Springer, Dordrecht (1997)

    Chapter  Google Scholar 

  53. Gollop, N., Zakin, V., Weinberg, Z.G.: Antibacterial activity of lactic acid bacteria included in inoculants for silage and in silages treated with these inoculants. J. Appl. Microbiol. 98, 662–666 (2005). https://doi.org/10.1111/j.1365-2672.2004.02504.x

    Article  Google Scholar 

  54. Weinberg, Z.G., Muck, R.E.: New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol. Rev. 19, 53–68 (1996). https://doi.org/10.1111/j.1574-6976.1996.tb00253.x

    Article  Google Scholar 

  55. Shaw, D.M., Rao, D.N., Mahendrakar, N.S.: Effect of different levels of molasses, salt and antimycotic agents on microbial profiles during fermentation of poultry intestine. Bioresour. Technol. 63, 237–241 (1998). https://doi.org/10.1016/S0960-8524(97)00136-3

    Article  Google Scholar 

Download references

Acknowledgements

The present work was performed as part of a cooperative agreement between the Consejo Nacional de Ciencia y Tecnologia (CONACyT, Mexico) and the Institut de Recherche pour le Développement (IRD, France) within a specific program undertaken at the Universidad Autonoma Metropolitana Iztapalapa Campus at Mexico City. Financial support was granted by the EU through a specific INCO-DEV program.

Funding

Not applicable for that section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Carboué.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perraud-Gaime, I., Carralot, JP., Carboué, Q. et al. Evolution of Physico-Chemical and Microbiological Parameters During Large-Scale Coffee-Pulp Silage. Waste Biomass Valor 12, 6057–6065 (2021). https://doi.org/10.1007/s12649-021-01456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01456-4

Keywords

Navigation