Skip to main content
Log in

Preservation of Fungal-Treated Cowpea Straw in Association with Discarded Apple by Ensilage Process

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The available agroindustry residues show high potential to be used as animal feedstuffs. This study aimed to valorise cowpea straw and discarded apple as potential ingredients for livestock diets through an ensiling process. Silage characteristics of cowpea straw (15%, as fresh) treated with Pleurotus citrinopileatus in association with discarded apple using or not a commercial inoculant were evaluated. At the moment of opening the silo, silages were stable and presented low pH values (≤ 4.2), high lactic acid concentration, no butyric acid, and aerobic stability averaged 134 h. The inoculated silage presented higher (p < 0.01) neutral detergent fibre, water-soluble carbohydrate (WSC), lactic acid and ethanol, but lower (p < 0.01) acetic acid concentrations. The use of the commercial inoculant increased the amount of lactic acid bacteria in the pre-mixture and at the time of opening the silo. No differences were observed in enterobacteriaceae, yeast and moulds count in both treatments until 288 h of air exposure. The pre-ensiled mixture showed a high ensilability potential, and the utilization of a silage inoculant enhanced the silage fermentation process promoting changes on the silage microflora.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carvalho, M., Lino-Neto, T., Rosa, E., Carnide, V.: Cowpea: a legume crop for a challenging environment. J. Sci. Food Agric. 97, 4273–4284 (2017). https://doi.org/10.1002/jsfa.8250

    Article  Google Scholar 

  2. Watson, C.A., Reckling, M., Preissel, S., Bachinger, J., Bergkvist, G., Kuhlman, T., Zander, P.: Grain legume production and use in European agricultural systems. In: Sparks, D. (ed.) Advances in Agronomy, vol. 144, pp. 235–303. Academic Press, New York (2017)

    Google Scholar 

  3. Iglesias, A., Garrote, L.: Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 155, 113–124 (2015). https://doi.org/10.1016/j.agwat.2015.03.014

    Article  Google Scholar 

  4. Anele, U.Y., Südekum, K.H., Hummel, J., Arigbede, O.M., Oni, A.O., Olanite, J.A., Jolaosho, A.O.: Chemical characterization, in vitro dry matter and ruminal crude protein degradability and microbial protein synthesis of some cowpea (Vigna unguiculata L. Walp) haulm varieties. Anim. Feed Sci. Technol. 163, 161–169 (2011). https://doi.org/10.1016/j.anifeedsci.2010.11.005

    Article  Google Scholar 

  5. Andrade, E., Gonçalves, A., Mendes-Ferreira, A., Silva, V., Pinheiro, V., Rodrigues, M., Ferreira, L.: A novel feedstuff: ensiling of cowpea (Vigna unguiculata L.) stover and apple (Malus domestica Borkh.) mixtures. Evaluation of the nutritive value, fermentation quality and aerobic stability. J. Sci. Food Agric. 97, 4306–4313 (2017). https://doi.org/10.1002/jsfa.8307

    Article  Google Scholar 

  6. Andrade, E., Pinheiro, V., Gonçalves, A., Cone, J.W., Marques, G., Silva, V., Ferreira, L., Rodrigues, M.: Potential use of cowpea (Vigna unguiculata (L.) Walp.) stover treated with white-rot fungi as rabbit feed. J. Sci. Food Agric. 97, 4386–4390 (2017). https://doi.org/10.1002/jsfa.8395

    Article  Google Scholar 

  7. Sharma, R.K., Arora, D.S.: Fungal degradation of lignocellulosic residues: an aspect of improved nutritive quality. Crit. Rev. Microbiol. 41, 52–60 (2015). https://doi.org/10.3109/1040841X.2013.791247

    Article  Google Scholar 

  8. Tuyen, V.D., Cone, J.W., Baars, J.J.P., Sonnenberg, A.S.M., Hendriks, W.H.: Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation. Bioresour. Technol. 111, 336–342 (2012). https://doi.org/10.1016/j.biortech.2012.02.001

    Article  Google Scholar 

  9. Tuyen, D.V., Phuong, H.N., Cone, J.W., Baars, J.J.P., Sonnenberg, A.S.M., Hendriks, W.H.: Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresour. Technol. 129, 256–263 (2013). https://doi.org/10.1016/j.biortech.2012.10.128

    Article  Google Scholar 

  10. Van Kuijk, S.J.A., Sonnenberg, A.S.M., Baars, J.J.P., Hendriks, W.H., Cone, J.W.: Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol. Adv. 33, 191–202 (2015). https://doi.org/10.1016/j.biotechadv.2014.10.014

    Article  Google Scholar 

  11. Mao, L., Sonnenberg, A.S., Hendriks, W.H., Cone, J.W.: Preservation of Ceriporiopsis subvermispora and Lentinula edodes treated wheat straw under anaerobic conditions. J. Sci. Food Agric. 98, 1232–1239 (2018). https://doi.org/10.1002/jsfa.8745

    Article  Google Scholar 

  12. Wadhwa, M., Bakshi, M.P.S: Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. Food Agricul. Organiz. United Nations, Bangkok (2013).

  13. Kara, K., Guclu, B.K., Baytok, E., Aktug, E., Oguz, F.K., Kamalak, A., Atalay, A.I.: Investigation in terms of digestive values, silages quality and nutrient content of the using pomegranate pomace in the ensiling of apple pomace with high moisture contents. J. Appl. Anim. Res. 46, 1233–1241 (2018). https://doi.org/10.1080/09712119.2018.1490300

    Article  Google Scholar 

  14. Alibes, X., Muñoz, F., Rodriguez, J.: Feeding value of apple pomace silage for sheep. J. Anim. Feed Sci. Tech. 11, 189–197 (1984). https://doi.org/10.1016/0377-8401(84)90062-2

    Article  Google Scholar 

  15. Givens, D., Barber, W.: Nutritive value of apple pomace for ruminants. Anim. Feed Sci. Tech. 16, 311–315 (1987). https://doi.org/10.1016/0377-8401(87)90020-4

    Article  Google Scholar 

  16. Rodrigues, M.A.M., Guedes, C.M., Rodrigues, A., Cone, J.W., Van Gelder, A.H., Ferreira, L.M.M.: Evaluation of the nutritive value of apple pulp mixed with different amounts of wheat straw. Livest. Res. Rural Dev. 20, 1–10 (2008)

    Google Scholar 

  17. Pirmohammadi, P., Rouzbehan, Y., Rezayazdi, K., Zahedifar, M.: Chemical composition, digestibility and in situ degradability of dried and ensiled apple pomace and maize silages. Small Ruminant Res. 66, 150–155 (2006). https://doi.org/10.1016/j.smallrumres.2005.07.054

    Article  Google Scholar 

  18. Kung, L., Shaver, R.D., Grant, R.J., Schmidt, R.J.: Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033 (2018). https://doi.org/10.3168/jds.2017-13909

    Article  Google Scholar 

  19. Conaghan, P., O’Kiely, P., O’Mara, F.P.: Conservation characteristics of wilted perennial ryegrass silage made using biological or chemical additives. J. Dairy Sci. 93, 628–643 (2010). https://doi.org/10.3168/jds.2008-1815

    Article  Google Scholar 

  20. AOAC, Official Methods of Analysis (15th edn). Association of Official Analytical Chemists, Arlington, VA (1990).

  21. Robertson, J.B., Van Soest, P.J.: The detergent system of analysis and its application in human foods. In: James WPT and Theander O (eds). The Analysis of Dietary Fiber in Food, pp. 123–158. New York, Marcel Dekker (1981)

  22. Van Soest, P.V., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991). https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  23. Goering, H.K., Van Soest, P.J.: Forage Fiber Analyses (Apparatus, Reagents, Procedures and Some Applications. Agriculture handbook Nº 379. Washington, Agricultural Research Service (1970).

  24. Irigoyen, J.J., Einerich, D.W., Sánchez-Díaz, M.: Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol. Plant. 84, 55–60 (1992). https://doi.org/10.1111/j.1399-3054.1992.tb08764.x

    Article  Google Scholar 

  25. Playne, M.J., McDonald, P.: The buffering constituents of herbage and of silage. J. Sci. Food Agric. 17, 264–268 (1966). https://doi.org/10.1002/jsfa.2740170609

    Article  Google Scholar 

  26. Czerkawski, J.W.: The use of pivalic acid as a reference substance in measurements of production of volatile fatty acids by rumen micro-organisms in vitro. Br. J. Nutr. 36, 311–315 (1976). https://doi.org/10.1079/BJN19760085

    Article  Google Scholar 

  27. Tilley, J.M.A., Terry, R.A.: A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18, 104–111 (1963). https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

    Article  Google Scholar 

  28. Marten, G.C., Barnes, R.F.: Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzyme systems, In: Pigden WJ, Balch CC, Graham M (eds). International Workshop on Standardization of Analytical Methodology for Feeds, pp. 61–71. Ottawa, International Development Research Center (1980).

  29. Thomas, C.: Feed into Milk: A New Applied Feeding System for Dairy Cows. Nottingham University Press, Nottingham, UK (2004)

    Google Scholar 

  30. International Organization for Standardization: Microbiology of Food and Animal Feeding Stuffs – Preparation of Test Samples, Initial Suspension and Decimal Dilutions For Microbiological Examination – Part 1: General Rules for the Preparation of the Initial Suspension and Decimal Dilutions. ISO 6887–1, 1999 (1999)

    Google Scholar 

  31. International Organization for Standardization: Microbiology of Food and Animal Feeding Stuffs – Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria – Colony-count Technique at 30 Degrees C. ISO 15214, 1998 (1998)

    Google Scholar 

  32. International Organization for Standardization: Microbiology of Food and Animal Feeding Stuffs – Horizontal Methods for the Detection and Enumeration of Enterobacteriaceae – Part 2: Colony-count Method. ISO 21528–2, 2004 (2004)

    Google Scholar 

  33. International Organization for Standardization: Microbiology of Food and Animal Feeding Stuffs – Horizontal Method for the Enumeration of Yeasts and Moulds – Part 1: Colony Count Technique in Products with Water Activity Greater Than 0,95. ISO 21527–1, 2008 (2008)

    Google Scholar 

  34. SAS, SAS User’s Guide 9.2 (2nd edn). SAS Institute, Cary, NC (2009).

  35. Shrivastava, B., Thakur, S., Khasa, Y.P., Gupte, A., Puniya, A.K., Kuhad, R.C.: White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22, 823–831 (2011). https://doi.org/10.1007/s10532-010-9408-2

    Article  Google Scholar 

  36. Chen, S., Zhang, X., Singh, D., Yu, H., Yang, X.: Biological pretreatment of lignocellulosics: potential, progress and challenges. Biofuels 1, 177–199 (2010). https://doi.org/10.4155/bfs.09.13

    Article  Google Scholar 

  37. Van Camp, J., Dierckx, S.: Analysis of proteins in foods. In: Nollet, L.M.L. (ed.) Handbook of Food Analysis, pp. 167–202. Marcel Dekker, NewYork (2004)

    Google Scholar 

  38. Han, G., Cheng, W., Deng, J., Dai, C., Zhang, S., Wu, Q.: Effect of pressurized steam treatment on selected properties of wheat straws. Ind. Crops Prod. 30, 48–53 (2009). https://doi.org/10.1016/j.indcrop.2009.01.004

    Article  Google Scholar 

  39. Agosin, E., Odier, E.: Solid-state fermentation, lignin degradation and resulting digestibility of wheat straw fermented by selected white-rot fungi. Appl. Microbiol. Biotechnol. 21, 397–403 (1985). https://doi.org/10.1007/BF00249988

    Article  Google Scholar 

  40. Dewhurst, R.J., Fisher, W.J., Tweed, J.K.S., Wilkins, R.J.: Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. J. Dairy Sci. 86, 2598–2611 (2003). https://doi.org/10.3168/jds.S0022-0302(03)73855-7

    Article  Google Scholar 

  41. Martinez-Fernandez, A., Soldado, A., de la Roza-Delgado, B., Vicente, F., Gonzalez-Arrojo, M.A.: Argamenteria A, Modelling a quantitative ensilability index adapted to forages from wet temperate areas. Span. J. Agric. Res. 11, 455–462 (2013). https://doi.org/10.5424/sjar/2013112-3219

    Article  Google Scholar 

  42. Weinberg, Z.G., Muck, R.E.: New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol. Rev. 19, 53–68 (1996). https://doi.org/10.1111/j.1574-6976.1996.tb00253.x

    Article  Google Scholar 

  43. Pahlow, G., Muck, R.E., Driehuis, F., Elferink, S.J.W., Spoelstra, S.F.: Microbiology of ensiling. Agronomy 42, 31–94 (2003). https://doi.org/10.2134/agronmonogr42.c2

    Article  Google Scholar 

  44. Muck, R.E., Nadeau, E.M.G., McAllister, T.A., Contreras-Govea, F.E., Santos, M.C., Kung, L.: Silage review: recent advances and future uses of silage additives. J. Dairy Sci. 101, 3980–4000 (2018). https://doi.org/10.3168/jds.2017-13839

    Article  Google Scholar 

  45. Wu, J., Gao, H., Zhao, L., Liao, X., Chen, F., Wang, Z., Hu, X.: Chemical compositional characterization of some apple cultivars. Food Chem. 103, 88–93 (2007). https://doi.org/10.1016/j.foodchem.2006.07.030

    Article  Google Scholar 

  46. Oliveira, A.S., Weinberg, Z.G., Ogunade, I.M., Cervantes, A.A., Arriola, K.G., Jiang, Y., Adesogan, A.T.: Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 100, 4587–4603 (2017). https://doi.org/10.3168/jds.2016-11815

    Article  Google Scholar 

  47. Chahine, M., Fife, T.E., Shewmaker, G.E.: Target values for corn silage. In: Idaho Alfalfa and Forage Conf. Proc., pp 1–5 (2009).

  48. Ward, R.T.: Fermentation analysis: use and interpretation. In: Proc. Tri-State Dairy Nutrition Conference, pp. 117–136. Fort Wayne, Indiana, USA (2000).

  49. Mendes, C.Q., Susin, I., Nussio, L.G., Pires, A.V., Rodrigues, G.H., Urano, F.S.: Effect of Lactobacillus buchneri on fermentation, aerobic stability, and nutritive value of sugarcane silage. Rev. Bras. Zootec. 37, 191–2.198 (2008). http://doi.org/https://doi.org/10.1590/S1516-35982008001200017

  50. Folman, L.B., Klein-Gunnewiek, P.J., Boddy, L., De Boer, W.: Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol. Ecol. 63, 181–191 (2008). https://doi.org/10.1111/j.1574-6941.2007.00425.x

    Article  Google Scholar 

  51. de Boer, W., Folman, L.B., Klein-Gunnewiek, P.J., Svensson, T., Bastviken, D., Öberg, G., Boddy, L.: Mechanism of antibacterial activity of the white-rot fungus Hypholoma fasciculare colonizing wood. Can. J. Microbiol. 56, 380–388 (2010). https://doi.org/10.1139/W10-023

    Article  Google Scholar 

  52. Daniel, J.L.P., Weiß, K., Custódio, L., Neto, A.S., Santos, M.C., Zopollatto, M., Nussio, L.G.: Occurrence of volatile organic compounds in sugarcane silages. Anim. Feed Sci. Technol. 185, 101–105 (2013). https://doi.org/10.1016/j.anifeedsci.2013.06.011

    Article  Google Scholar 

  53. da Silva, T.C., da Silva, L.D., Santos, E.M., Oliveira, J.S., Perazzo, A.F.: Importance of the Fermentation to Produce High-Quality Silage. In: Jozala A (ed). Fermentation Processes, pp. 1–21. London, InTech (2017).

  54. Jacovaci, F.A., Jobim, C.C., Schmidt, P., Nussio, L.G., Daniel, J.L.P.: A data-analysis on the conservation and nutritive value of sugarcane silage treated with calcium oxide. Anim. Feed Sci. Technol. 225, 1–7 (2017). https://doi.org/10.1016/j.anifeedsci.2017.01.005

    Article  Google Scholar 

  55. Wei, J., Niu, C., Liu, B., Yuan, Y., Yue, T.: Identification and characterization of epiphytic yeasts on apples in China. RSC Adv. 7, 44766–44772 (2017). https://doi.org/10.1039/C7RA08234G

    Article  Google Scholar 

  56. Kleinschmit, D.H., Schmidt, R.J., Kung, L.: The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 88, 2130–2139 (2005). https://doi.org/10.3168/jds.S0022-0302(05)72889-7

    Article  Google Scholar 

  57. Knicky, M., Spörndly, R.: The ensiling capability of a mixture of sodium benzoate, potassium sorbate, and sodium nitrite. J. Dairy Sci. 94, 824–831 (2011). https://doi.org/10.3168/jds.2010-3364

    Article  Google Scholar 

  58. Oude Elferink, S.J.W.H., Driehuis, F., Gottschal, J.C.: Silage fermentation processes and their manipulation. In: Mannetje L (ed). Silage fermentation processes and their manipulation, pp. 17–30. Rome, FAO (2000).

  59. Muck, R.E.: Silage microbiology and its control through additives. R. Bras. Zootec. 39, 183–191 (2010). https://doi.org/10.1590/S1516-35982010001300021

    Article  Google Scholar 

  60. Kleinschmit, D.H., Kung, L.: The effects of Lactobacillus buchneri 40788 and Pediococcus pentosaceus R1094 on the fermentation of corn silage. J. Dairy Sci. 89, 3999–4004 (2006). https://doi.org/10.3168/jds.S0022-0302(06)72443-2

    Article  Google Scholar 

  61. Ke, W.C., Yang, F.Y., Undersander, D.J., Guo, X.S.: Fermentation characteristics, aerobic stability, proteolysis and lipid composition of alfalfa silage ensiled with apple or grape pomace. Anim. Feed Sci. Technol. 202, 12–19 (2015). https://doi.org/10.1016/j.anifeedsci.2015.01.009

    Article  Google Scholar 

  62. Woolford, M.K.: The detrimental effects of air on silage. J. Appl. Microbiol. 68, 101–116 (1990). https://doi.org/10.1111/j.1365-2672.1990.tb02554.x

    Article  Google Scholar 

Download references

Funding

European Project EUROLEGUME (Seventh Research Framework Programme of the European Union—FP7 Research Project No. 613781); National Funds by FCT—Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/20192013; European Investment Funds by FEDER/COMPETE/POCI–Operational Competitiveness and Internationalisation Programme, under Project POCI-01-0145-FEDER-006958; EA is recipient of a predoctoral fellowship from the CAPES Foundation (Grant Number BEX-13521/13-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Ferreira.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest associated with the development of this original research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, E., Mendes-Ferreira, A., Botelho, S. et al. Preservation of Fungal-Treated Cowpea Straw in Association with Discarded Apple by Ensilage Process. Waste Biomass Valor 12, 5533–5543 (2021). https://doi.org/10.1007/s12649-021-01396-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01396-z

Keywords

Navigation