Skip to main content

Advertisement

Log in

Strategy to Strengthen Rural Domestic Waste Composting at Low Temperature: Choice of Ventilation Condition

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In order to investigate the effects of the ventilation conditions on the rural domestic waste composting efficiency at low ambient temperature, three composting groups, which were carried out in self-designed high-efficiency, low-energy-consuming aerobic composting reactor, were compared: hot-blast air group (H), natural air group (N), and stuffiness group (S). The operating parameters of the two ventilation groups include a ventilation rate and frequency of 0.2 m3/min m3 and 20 min/2 h, respectively. In this study, the rates of temperature rose in the group H, N, S were 34.8, 6.4, 11.3 °C/day, respectively, and only the group H reached a maximum temperature of over 50 °C. Moreover, the biochemical analysis, microbial community analysis and the composting product assessment indicated that the reaction degree and treatment effect of the group H were much better than the other two groups. Results showed that the positive effect of H on the efficiency of the composting process was achieved by affecting ventilation conditions. Accordingly, we provided a method to solve the problem regarding temperature limitations of the conventional composting process in cold area.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Zhaohui, Y., Guangming, Z., Xingzhong, Y., Feng, G.: Application of microorganism selecting and breeding technology in municipal domestic waste composting treatment. Environ. Sanit. Eng. 11, 115–118 (2003)

    Google Scholar 

  2. Giusti, E., Marsili-Libelli, S.: Fuzzy modelling of the composting process. Environ. Modell. Softw. 25, 641–647 (2010)

    Google Scholar 

  3. Zhang, D.Q., Soon, K.T., Gersbergc, M.: Municipal solid waste management in China: status, problems and challenges. J. Environ. Manage. 91, 1623–1633 (2010)

    Google Scholar 

  4. Butler, T., Sikora, L., Steinhilber, P., Douglass, L.: Compost age and sample storage effects on maturity indicators of biosolids compost. J. Environ. Qual. 30, 2141–2148 (2001)

    Google Scholar 

  5. Cheng, H., Hu, Y.: Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresource Technol. 101, 3816–3824 (2010)

    Google Scholar 

  6. Bernal, M.P., Paredes, C., Sanches, M.A.: Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technol. 63, 91–99 (1998)

    Google Scholar 

  7. Huang, H.L.: Current study on the effect of lignolytic organisms on humus formation in composting. Prog. Biotechnol. 24, 29–31 (2004)

    Google Scholar 

  8. Ashok, K., Amitabh, T., Kaushal, B.R., Mali, R.R., Abhishek, B., Bhanu, P.: Domestic waste exploitation in the course of composting under changeable sets of biotic mingle. Middle-East J. Sci. Res. 5, 170–173 (2010)

    Google Scholar 

  9. Alexis, M., Mihelcic, R.: Sustainable recycling of municipal solid waste in developing countries. Waste Manage. 29, 915–923 (2009)

    Google Scholar 

  10. DomingoMartíNadal, J.L.: Domestic waste composting facilities: a review of human health risks. Environ. Int. 35, 382–389 (2009)

    Google Scholar 

  11. Suzuki, S.: Rural refuse composting plant. Rural Environ. Eng. 5, 48–56 (1984)

    Google Scholar 

  12. Zhao, K., Zhang, Y., Zhang, Y.T., Yin, Y.Y.: Effects of ventilation on sewage sludge composting. Environ. Technol. Resource Util. II 675, 742–745 (2014)

    Google Scholar 

  13. Kuter, G.A.: Effects of aeration and temperature on composting of municipal sludge in a full-scale vessel system. Water Pollut. Control Federation 57, 309–315 (2015)

    Google Scholar 

  14. Nekliudov, A.D., Fedotov, G.N., Ivankin, A.N.: Intensification of composting processes by aerobic microorganisms: a review. Appl. Biochem. Microbiol. 44, 6–18 (2008)

    Google Scholar 

  15. Suarez-Estrella, F., Vargas-Garcıa, M.C., Lopez, M.J., Moreno, J.: Effect of horticultural waste composting on infected plant residues with pathogenic bacteria and fungi: integrated and localized sanitation. Waste Manage. 27, 886–892 (2007)

    Google Scholar 

  16. Li, X.Y., Wu, X.W., Gao, T.Y., Zhou, Q.Y.: Domestic waste composting with complex thermophilic microbial inoculation. J. Tongji Univ. 32, 367–371 (2004)

    Google Scholar 

  17. Vander, G.J.S., Gossett, J.M., Walker, L.P.: High-solids aerobic decomposition: pilot-scale reactor development and experimentation. Process Biochem. 32, 361–375 (1997)

    Google Scholar 

  18. Cegarra, J., Alburquerquea, J.A., Gonzalvez, J., Tortosa, G., Chawb, D.: Effects of the forced ventilation on composting of a solid olive-mill by-product (“alperujo”) managed by mechanical turning. Waste Manage. 26, 1377–1383 (2006)

    Google Scholar 

  19. Wang, X., Cui, H., Shi, J., Zhao, X., Zhao, Y., Wei, Z.: Relationship between bacterial diversity and environmental parameters during composting of different raw materials. Bioresource Technol. 198, 395–402 (2015)

    Google Scholar 

  20. Macgregor, S.T., Miller, F., Psarianos, K.M., Finstein, M.S.: Composting process control based on interaction between microbial heat output and temperature. Appl. Environ. Microbiol. 41, 1321–1330 (1981)

    Google Scholar 

  21. Epstein, E.: The science of composting. Springer, Dordrecht (1997)

    Google Scholar 

  22. Antizar, L.B., Lopez, R.J., Beek, A.J.: Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting. Waste Manage. 25, 281–289 (2005)

    Google Scholar 

  23. Zhu, N.: Composting of high moisture content swine manure with corncob in a pilot-scale aerated static bin system. Bioresource Technol. 97, 1870–1875 (2006)

    Google Scholar 

  24. Petric, I., Heli, A., Avdi, E.: Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure. Bioresource Technol. 117, 107–116 (2012)

    Google Scholar 

  25. Sánehez, M.M.A., Roig, A., Paredes, C.: Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresource Technol. 78, 301–308 (2001)

    Google Scholar 

  26. Wong, J.W.C., Li, S.W.Y., Wong, M.H.: Coal fly ash as a composting material for sewage sludge: effects on microbial activities. Environ. Technol. Lett. 16(6), 527–537 (1995)

    Google Scholar 

  27. Lazcano, C., Gómez-Brandón, M., Domínguez, J.: Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72(7), 1013–1019 (2008)

    Google Scholar 

  28. Raviv, M., Medina, S., Krasnovsky, A.: Organic matter and nitrogen conservation in manure compost for organic agriculture. Compost Sci. Util. 12, 6–10 (2004)

    Google Scholar 

  29. Haug, R.T.: The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Raton (1993)

    Google Scholar 

  30. Hirai, M.F., Chanyasak, V., Kubota, H.: A standard measurement for compost maturity. Biocycle 24, 54–56 (1983)

    Google Scholar 

  31. Huang, G.F., Wong, J.W.: Effect of C/N on composting of pig manure with sawdust. Waste Manage. 24, 805–813 (2004)

    Google Scholar 

  32. Zhu, N.W.: Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresource Technol. 98, 9–13 (2007)

    Google Scholar 

  33. Annabi, M., Houot, S., Francou, C., et al.: Soil aggregate stability improvement with urban composts of different maturities. Soil Sci. Soc. Am. J. 71(2), 413–423 (2007)

    Google Scholar 

  34. Jia, C.X., Peng, X.Y., Yuan, R.H., Cai, H.S., Liao, L.S.: Biologically degradable material for stability determination of municipal solid waste composting. China Water Wastewater 22, 68–70 (2006)

    Google Scholar 

  35. Wu, J., Zhao, Y., Zhao, W., Yang, T., Zhang, X., Xie, X., Cui, H., Wei, Z.: Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting. Bioresource Technol. 226, 191–199 (2017)

    Google Scholar 

  36. Carmen, R., Chirenjeb, T., Mac, L.Q., Martinezd, G.: Influence of compost on soil organic matter quality under tropical conditions. Geoderma 123, 355–361 (2004)

    Google Scholar 

  37. Tiquia, S.: Reduction of compost phytotoxicity during the process of decomposition. Chemosphere 79, 506–512 (2010)

    Google Scholar 

  38. Zucconi, F., Pera, A., Forte, M.: Evaluating toxicity of immature compost. Biocycle 22, 54–57 (1981)

    Google Scholar 

  39. Wong, M.T., Wang, W., Lacourt, M., Couturier, M., Edwards, E., Master, E.R.: Substrate-driven convergence of the microbial community in lignocellulose-amended enrichments of gut microflora from the Canadian beaver (Castor canadensis) and North American Moose (Alces americanus). Front. Microbiol. 7, 961 (2016)

    Google Scholar 

  40. Hao, L., Lue, F., Mazeas, L., Desmond-Le Quemener, E., Madigou, C., Guenne, A., Shao, L., Bouchez, T., He, P.: Stable isotope probing of acetate fed anaerobic batch incubations shows a partial resistance of acetoclastic methanogenesis catalyzed by Methanosarcina to sudden increase of ammonia level. Water Res. 69, 90–99 (2015)

    Google Scholar 

  41. Carney, L.T., Reinsch, S.S., Lane, P.D., Solberg, O.D., Jansen, L.S., Williams, K.P., Trent, D.T., Lane, T.W.: Microbiome analysis of a microalgal mass culture growing in municipal wastewater in a prototype OMEGA photobioreactor. Algal Res. 4, 52–61 (2014)

    Google Scholar 

  42. Martin, M., Barbeyron, T., Martin, R., Portetelle, D., Michel, G., Vandenbol, M.: The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria. Front. Microbiol. 6, 1487 (2015)

    Google Scholar 

  43. Kindaichi, T., Yamaoka, S., Uehara, R., Ozaki, N.: Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge. FEMS Microbiol. Ecol. 92, 78 (2016)

    Google Scholar 

  44. Piao, H., Lachman, M., Malfatti, S., Sczyrba, A.: Temporalnamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Front. Microbiol. 5, 307 (2014)

    Google Scholar 

  45. Herlemann, D.P.R., Lundin, D., Labrenz, M., Jurgens, K., Zheng, Z., Aspeborg, H., Andersson, A.F.: Metagenomic de novo assembly of an aquatic representative of the verrucomicrobial class Spartobacteria. MBIO 4, 12 (2013)

    Google Scholar 

  46. Im, W.-T., Hu, Z.-Y., Kim, K.-H., Rhee, S.-K., Meng, H., Lee, S.-T., Quan, Z.-X.: Description of Fimbriimonas ginsengisoli gen. nov., sp. nov. within the Fimbriimonadia class nov., of the phylum Armatimonadetes. Antonie Van Leeuwenhoek 102, 307–317 (2012)

    Google Scholar 

  47. Wang, Y.B., Zhang, X.P., Huang, Y., Li, W.F.: Intestinal microflora analysis of pre-and post-weaning piglets using by 454 pyrosequencing technology. Chin. J. Anim. Nutr. 25, 2440–2446 (2013)

    Google Scholar 

  48. Pagenkopp, L.K.M., Fleischer, R.C., Carney, K.J., Holzer, K.K., Rulz, G.M.: Amplicon-based pyrosequencing reveals high diversity of protistan parasites in ships' ballast water: implications for biogeography and infectious diseases. Microbial Ecol. 71, 530–542 (2016)

    Google Scholar 

  49. Heger, T.J., Pawlowski, J.L., Enrique, L., Brian, S.L., Todorov, M., Golemansky, V., Mitchell, A.D.: Comparing potential COI and SSU r DNA barcodes for assessing the diversity and phylogenetic relationships of Cyphoderiid Testate Amoebae (Rhizaria: Euglyphida). Protist 162, 131–141 (2011)

    Google Scholar 

  50. Payne, R.J., Belyakova, O., Maze, Y.: Diversity and community ecology of forest epiphyte testate amoebae from European Russia. Eur. J. Protistol. 51, 450–459 (2015)

    Google Scholar 

  51. Arrieira, R.L., Alves, G.M., Schwind, L.T., Lansac, F.A.: Local factors affecting the testate amoeba community (Protozoa: Arcellinida; Euglyphida) in a neotropical floodplain. J. Limnol. 74, 444–452 (2015)

    Google Scholar 

  52. Villaseñor, J., Martina, A.P., Francisco, J.F., Cecilia, M.P.: Monitoring respiration and biological stability during sludge composting with a modified dynamic respirometer. Bioresource Technol. 102, 6562–6568 (2011)

    Google Scholar 

  53. Zhou, C., Liu, Z., Huang, Z.-L., Dong, M., Yu, X.-L., Ning, P.: A new strategy for co-composting dairy manure with rice straw: addition of different inocula at three stages of composting. Waste Manage. 40, 38–43 (2015)

    Google Scholar 

  54. Nakasaki, K., Yaguchi, H., Sasaki, Y., Kubota, H.: Effects of pH control on composting of garbage. Waste Manage. Res. 11, 117–125 (1993)

    Google Scholar 

  55. Garcia-Peña, E.I., Parameswaran, P., Kang, D.W., Canul-Chan, M., Krajmalnik-Brown, R.: Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresource Technol. 102, 9447–9458 (2011)

    Google Scholar 

  56. Inbar, Y., Chen, Y., Harada, Y.: Carbon-13 CPMAS NMR and FITR spectroscopic analysis of organic matter transformations during composting of solid waste from wineries. Soil Sci. 152, 272–282 (1991)

    Google Scholar 

  57. Hargreavesa, J.C., Adla, M.S., Warmanb, P.R.: A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 123, 1–14 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Zhejiang Province Key Science and Technology Projects (Grant No. 2015C03008) and Zhejiang Province Key Science and Technology Projects (Grant No. 2015C03011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Luo, S., Du, S. et al. Strategy to Strengthen Rural Domestic Waste Composting at Low Temperature: Choice of Ventilation Condition. Waste Biomass Valor 11, 6649–6665 (2020). https://doi.org/10.1007/s12649-020-00943-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-00943-4

Keywords

Navigation