Skip to main content
Log in

Microwave-Assisted Synthesis and Characterization of an Agriculturally Derived Silver Nanocomposite and Its Derivatives

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Nanocomposites and activated carbons are well known and tested effective adsorbents in the areas of water purification and water treatment. However, commercial nanocomposites and activated carbons are expensive; therefore, it has become increasingly pertinent to produce affordable nanocomposites and activated carbons. Herein, we report a microwave assisted synthesis of an agriculturally derived nanocomposite, maize tassel-silver (MtAg) nanocomposite. Controlled growth of silver nanoparticles (AgNPs) was formed with maize tassel powder (a lignocellulosic material) and silver nitrate in the ratio (1:1) and optimized microwave conditions of 1 h, 60 °C and 800 W. The MtAg nanocomposite was activated physically and chemically using air at 400 °C and nitrogen at 600 °C and H3PO4 at 500 °C respectively. The activated and non-activated MtAg nanocomposite were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy (TEM), thermogravimetric analysis, Brunauer–Emmett–Teller (BET) and powder X-ray diffraction (XRD). The irregular sized, spherical shape of AgNPs was confirmed on the newly formed MtAg nanocomposite material using TEM. The XRD patterns showed diffraction peaks at 2θ of about 37.8°, 43.6°, 64.6°, 76.8° and 81.3°. The synthesized MtAg nanocomposite (ratios 1:1, 3:1 and 5:1/maize tassel vs. silver nitrate) exhibited low BET surface areas of 0.42, 0.36 and 0.13 m2/g, respectively. Upon physical activation, a BET surface area (86.27 m2/g) was recorded and this increased significantly to 331 m2/g, with chemical activation. The synthesized MtAg nanocomposite was found to be an improved form of the original tassel material in terms of thermal stability, crystallinity and structural morphology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Both the raw and processed data required to reproduce these findings are available to download from https://data.mendeley.com/datasets/357wssp4rc/1.

References

  1. Goldstein, N., Greenlee, L.F.: Influence of synthesis parameters on iron nanoparticle size and zeta potential. J. Nanopart. Res. 14(4), 760 (2012). https://doi.org/10.1007/s11051-012-0760-5

    Article  Google Scholar 

  2. Virkutyte, J., Varma, R.S.: Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2(5), 837–846 (2011). https://doi.org/10.1039/C0SC00338G

    Article  Google Scholar 

  3. Singh, P.K., Jairath, G., Ahlawat, S.S.: Nanotechnology: a future tool to improve quality and safety in meat industry. J. Food Sci. Technol. 53(4), 1739–1749 (2016). https://doi.org/10.1007/s13197-015-2090-y

    Article  Google Scholar 

  4. Xu, P., Han, X., Zhang, B., Du, Y., Wang, H.-L.: Multifunctional polymer–metal nanocomposites via direct chemical reduction by conjugated polymers. Chem. Soc. Rev. 43(5), 1349–1360 (2014). https://doi.org/10.1039/C3CS60380F

    Article  Google Scholar 

  5. Li, S.-M., Jia, N., Ma, M.-G., Zhang, Z., Liu, Q.-H., Sun, R.-C.: Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr. Polym. 86(2), 441–447 (2011). https://doi.org/10.1016/j.carbpol.2011.04.060

    Article  Google Scholar 

  6. Ortega, F., Giannuzzi, L., Arce, V.B., García, M.A.: Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocoll. 70, 152–162 (2017). https://doi.org/10.1016/j.foodhyd.2017.03.036

    Article  Google Scholar 

  7. Saifuddin, N., Nian, C., Zhan, L., Ning, K.: Chitosan-silver nanoparticles composite as point-of-use drinking water filtration system for household to remove pesticides in water. Asian J. Biochem. 6(2), 142–159 (2011). https://doi.org/10.3923/ajb.2011.142.159

    Article  Google Scholar 

  8. Omo-Okoro, P.N., Daso, A.P., Okonkwo, J.O.: Per- and polyfluoroalkyl substances: ubiquity, levels, toxicity and their removal from aqueous media using novel agro-based adsorbents. In: Accepted Abstract and Oral Presentation for the 38th International Symposium on Halogenated Persistent Organic Pollutants & 10th International PCB Workshop (DIOXIN 2018), Kraków, Poland (2018)

  9. Zvinowanda, C.M., Okonkwo, J.O., Sekhula, M.M., Anyei, N.M., Sadiku, R.: Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the prescence of alkaline metals. J. Hazard. Mater. 164, 884–891 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.110

    Article  Google Scholar 

  10. Zvinowanda, C., Okonkwo, J., Agyei, N., Staden, M.v., Jordaan, W., Kharebe, B.: Recovery of lead (II) from aqueous solutions by Zea mays tassel biosorption. Am. J. Biochem. Biotechnol. 6(1), 1–10 (2010)

    Article  Google Scholar 

  11. Moyo, M., Chikazaza, L., Nyamunda, B.C., Guyo, U.: Adsorption batch studies on the removal of Pb (II) using maize tassel based activated carbon. J. Chem. (2013). https://doi.org/10.1155/2013/508934

    Article  Google Scholar 

  12. Moyo, M., Okonkwo, J.O., Agyei, N.M.: An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution. Enzyme Microb. Technol. 56, 28–34 (2014). https://doi.org/10.1016/j.enzmictec.2013.12.014

    Article  Google Scholar 

  13. Li, S., Chen, H., Cui, D., Li, J., Zhang, Z., Wang, Y., Tang, T.: Structure and properties of multi-walled carbon nanotubes/polyethylene nanocomposites synthesized by in situ polymerization with supported Cp2ZrCl2 catalyst. Polym. Compos. 31(3), 507–515 (2010). https://doi.org/10.1002/pc.20831

    Article  Google Scholar 

  14. Lidström, P., Tierney, J., Wathey, B., Westman, J.: Microwave assisted organic synthesis—a review. Tetrahedron 57(45), 9225–9283 (2001). https://doi.org/10.1016/S0040-4020(01)00906-1

    Article  Google Scholar 

  15. Liu, Q.-S., Zheng, T., Wang, P., Guo, L.: Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind. Crops Prod. 31(2), 233–238 (2010). https://doi.org/10.1016/j.indcrop.2009.10.011

    Article  Google Scholar 

  16. Joseph, C., Quek, K., Daud, W., Moh, P.: Physical Activation of Oil Palm Empty Fruit Bunch Via CO2 Activation Gas for CO2 Adsorption. In: Paper Presented at the IOP Conference Series: Materials Science and Engineering (2017). https://doi.org/10.1088/1757-899X/206/1/012003

  17. Korichi, S., Elias, A., Mefti, A.: Characterization of smectite after acid activation with microwave irradiation. Appl. Clay Sci. 42(3), 432–438 (2009). https://doi.org/10.1016/j.clay.2008.04.014

    Article  Google Scholar 

  18. Korichi, S., Elias, A., Mefti, A., Bensmaili, A.: The effect of microwave irradiation and conventional acid activation on the textural properties of smectite: comparative study. Appl. Clay Sci. 59, 76–83 (2012). https://doi.org/10.1016/j.clay.2012.01.020

    Article  Google Scholar 

  19. Motshekga, S.C., Ray, S.S., Onyango, M.S., Momba, M.N.: Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J. Hazard. Mater. 262, 439–446 (2013). https://doi.org/10.1016/j.jhazmat.2013.08.074

    Article  Google Scholar 

  20. Motshekga, S.C., Ray, S.S., Onyango, M.S., Momba, M.N.: Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl. Clay Sci. 114, 330–339 (2015). https://doi.org/10.1016/j.clay.2015.06.010

    Article  Google Scholar 

  21. Demiral, H., Demiral, İ, Karabacakoğlu, B., Tümsek, F.: Production of activated carbon from olive bagasse by physical activation. Chem. Eng. Res. Des. 89(2), 206–213 (2011). https://doi.org/10.1016/j.cherd.2010.05.005

    Article  Google Scholar 

  22. Rodriguez-Reinoso, F., Molina-Sabio, M., Gonzalez, M.: The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 33(1), 15–23 (1995). https://doi.org/10.1016/0008-6223(94)00100-E

    Article  Google Scholar 

  23. Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3), 848–889 (2006)

    Article  Google Scholar 

  24. Radhika, M., Palanivelu, K.: Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—kinetics and isotherm analysis. J. Hazard. Mater. 138(1), 116–124 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.045

    Article  Google Scholar 

  25. Daud, W.M.A., Ali, W.S.W.: Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour. Technol. 93, 63–69 (2004). https://doi.org/10.1016/j.biortech.2003.09.015

    Article  Google Scholar 

  26. Dias, J.M., Alvim-Ferraz, M.C., Almeida, M.F., Rivera-Utrilla, J., Sánchez-Polo, M.: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85(4), 833–846 (2007). https://doi.org/10.1016/j.jenvman.2007.07.031

    Article  Google Scholar 

  27. Chang, K.-L., Hsieh, J.-F., Ou, B.-M., Chang, M.-H., Hseih, W.-Y., Lin, J.-H., et al.: Adsorption studies on the removal of an endocrine-disrupting compound (Bisphenol A) using activated carbon from rice straw agricultural waste. Sep. Sci. Technol. 47(10), 1514–1521 (2012). https://doi.org/10.1080/01496395.2011.647212

    Article  Google Scholar 

  28. Mohan, D., Pittman, C.U.: Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J. Hazard. Mater. 137(2), 762–811 (2006). https://doi.org/10.1016/j.jhazmat.2006.06.060

    Article  Google Scholar 

  29. Oluwafemi, O.S., Vuyelwa, N., Scriba, M., Songca, S.P.: Green controlled synthesis of monodispersed, stable and smaller sized starch-capped silver nanoparticles. Mater. Lett. 106, 332–336 (2013). https://doi.org/10.1016/j.matlet.2013.05.001

    Article  Google Scholar 

  30. Cheviron, P., Gouanvé, F., Espuche, E.: Preparation, characterization and barrier properties of silver/montmorillonite/starch nanocomposite films. J. Membr. Sci. 497, 162–171 (2016). https://doi.org/10.1016/j.memsci.2015.09.039

    Article  Google Scholar 

  31. Ji, N., Liu, C., Zhang, S., Xiong, L., Sun, Q.: Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT-Food Sci. Technol. 74, 311–318 (2016). https://doi.org/10.1016/j.lwt.2016.07.065

    Article  Google Scholar 

  32. Jung, J., Raghavendra, G.M., Kim, D., Seo, J.: One-step synthesis of starch-silver nanoparticle solution and its application to antibacterial paper coating. Int. J. Biol. Macromol. 107, 2285–2290 (2018). https://doi.org/10.1016/j.ijbiomac.2017.10.108

    Article  Google Scholar 

  33. Maepa, C., Okonkwo, J., Ray, S., Wesley-Smith, J., Ramontja, J.: Surface characterization of maize tassel-silver nanoparticles. In: Oral Presentation at the Microscopy Society of South Africa (MSSA) Conference, 2012, Cape Town, South Africa (2012). https://conferencealerts.com/show-event?id=105797

  34. Moreno-Castilla, C., Carrasco-Marín, F., Lopez-Ramon, M.V., Alvarez-Merino, M.A.: Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon 39(9), 1415–1420 (2001). https://doi.org/10.1016/S0008-6223(00)00268-2

    Article  Google Scholar 

  35. Pal, J., Deb, M.K., Deshmukh, D.K., Verma, D.: Removal of methyl orange by activated carbon modified by silver nanoparticles. Appl. Water Sci. 3(2), 367–374 (2013). https://doi.org/10.1007/s13201-013-0087-0

    Article  Google Scholar 

  36. Omo-Okoro, P.N., Daso, A.P., Okonkwo, J.O.: A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies. Environ. Technol. Innov. 9, 100–114 (2018). https://doi.org/10.1016/j.eti.2017.11.005

    Article  Google Scholar 

  37. Sing, K.S., Williams, R.T.: Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22(10), 773–782 (2004). https://doi.org/10.1260/0263617053499032

    Article  Google Scholar 

  38. WHO. (2011). Guidelines for drinking-water quality. In: World Health Organization (WHO), 4th edn., vol. 38, pp. 104–108

  39. Djerahov, L., Vasileva, P., Karadjova, I., Kurakalva, R.M., Aradhi, K.K.: Chitosan film loaded with silver nanoparticles—sorbent for solid phase extraction of Al (III), Cd (II), Cu (II), Co (II), Fe (III), Ni (II), Pb (II) and Zn (II). Carbohydr. Polym. 147, 45–52 (2016). https://doi.org/10.1016/j.carbpol.2016.03.080

    Article  Google Scholar 

  40. Regiel, A., Irusta, S., Kyzioł, A., Arruebo, M., Santamaria, J.: Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 24(1), 015101 (2012)

    Article  Google Scholar 

  41. Ito, T., et al.: Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 20(16), 6940–6945 (2004). https://doi.org/10.1021/la049524t

    Article  Google Scholar 

  42. Fischer, K., Schmidt, M.: Pitfalls and novel applications of particle sizing by dynamic light scattering. Biomaterials 98, 79–91 (2016). https://doi.org/10.1016/j.biomaterials.2016.05.003

    Article  Google Scholar 

  43. Fissan, H., et al.: Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods 6(18), 7324–7334 (2014). https://doi.org/10.1039/C4AY01203H

    Article  Google Scholar 

  44. Ahmad, M.B., Tay, M.Y., Shameli, K., Hussein, M.Z., Lim, J.J.: Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int. J. Mol. Sci. 12(8), 4872–4884 (2011). https://doi.org/10.3390/ijms12084872

    Article  Google Scholar 

  45. Zhang, Y., Gao, X., Zhi, L., Liu, X., Jiang, W., Sun, Y., Yang, J.: The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action. J. Inorg. Biochem. 130, 74–83 (2014). https://doi.org/10.1016/j.jinorgbio.2013.10.004

    Article  Google Scholar 

  46. Olorundare, O.F., Msagati, T.A.M., Krause, R.W.M., Okonkwo, J.O., Mamba, B.B.: Activated carbon from lignocellulosic waste residues: effect of activating agent on porosity characteristics and use as adsorbents for organic species. Water Air Soil Pollut. 225(3), 1876 (2014)

    Article  Google Scholar 

  47. Qiu, L., Chen, W., Qu, B.: Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites. Polymer 47(3), 922–930 (2006). https://doi.org/10.1016/j.polymer.2005.12.017

    Article  Google Scholar 

  48. Yu, H.-Y., Qin, Z.-Y., Sun, B., Yan, C.F., Yao, J.-M.: One-pot green fabrication and antibacterial activity of thermally stable corn-like CNC/Ag nanocomposites. J. Nanopart. Res. 16(1), 2202 (2014). https://doi.org/10.1007/s11051-013-2202-4

    Article  Google Scholar 

  49. George, J.J., Bhowmick, A.K.: Ethylene vinyl acetate/expanded graphite nanocomposites by solution intercalation: preparation, characterization and properties. J. Mater. Sci. 43(2), 702–708 (2008). https://doi.org/10.1007/s10853-007-2193-6

    Article  Google Scholar 

  50. Chrissafis, K., Pavlidou, E., Paraskevopoulos, K.M., Beslikas, T., Nianias, N., Bikiaris, D.: Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite. J. Therm. Anal. Calorim. 105(1), 313–323 (2010). https://doi.org/10.1007/s10973-010-1168-z

    Article  Google Scholar 

  51. Chrissafis, K., Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523(1), 1–24 (2011). https://doi.org/10.1016/j.tca.2011.06.010

    Article  Google Scholar 

  52. Ye, L., Wu, Q., Qu, B.: Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polym. Degrad. Stab. 94(5), 751–756 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.02.010

    Article  Google Scholar 

  53. Guo, J., Lua, A.C.: Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants. Mater. Lett. 55(5), 334–339 (2002). https://doi.org/10.1016/S0167-577X(02)00388-9

    Article  Google Scholar 

  54. Joseph, C., Yii, F.: Textural and chemical characterisation of activated carbons prepared from rice husk (Oryza sativa) using a two-stage activation process. J. Eng. Sci. Technol. 3(3), 234–242 (2008)

    Google Scholar 

  55. Zhang, T., Walawender, W.P., Fan, L., Fan, M., Daugaard, D., Brown, R.: Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem. Eng. J. 105(1), 53–59 (2004). https://doi.org/10.1016/j.cej.2004.06.011

    Article  Google Scholar 

  56. Fagbayigbo, B.O., Opeolu, B.O., Fatoki, O.S., Akenga, T.A., Olatunji, O.S.: Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter. Environ. Sci. Pollut. Res. 24(14), 13107–13120 (2017). https://doi.org/10.1007/s11356-017-8912-x

    Article  Google Scholar 

  57. Olorundare, O., Krause, R., Okonkwo, J., Mamba, B.: Potential application of activated carbon from maize tassel for the removal of heavy metals in water. Phys. Chem. Earth A/B/C 50, 104–110 (2012). https://doi.org/10.1016/j.pce.2012.06.001

    Article  Google Scholar 

  58. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015).https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  59. Maepa, C., Jayaramudu, J., Okonkwo, J., Ray, S., Sadiku, E., Ramontja, J.: Extraction and characterization of natural cellulose fibers from maize tassel. Int. J. Polym. Anal. Charact. 20(2), 99–109 (2015). https://doi.org/10.1080/1023666X.2014.961118f

    Article  Google Scholar 

  60. Deng, S., Nie, Y., Du, Z., Huang, Q., Meng, P., Wang, B., et al.: Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. J. Hazard. Mater. 282, 150–157 (2015). https://doi.org/10.1016/j.jhazmat.2014.03.045

    Article  Google Scholar 

  61. Rahman, M., Peldszus, S., Anderson, W.: Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res. 50, 218–240 (2014). https://doi.org/10.1016/j.watres.2013.10.045

    Article  Google Scholar 

  62. Abreu, A.S., Oliveira, M., de Sá, A., Rodrigues, R.M., Cerqueira, M.A., Vicente, A.A., Machado, A.: Antimicrobial nanostructured starch based films for packaging. Carbohydr. Polym. 129, 127–134 (2015). https://doi.org/10.1016/j.carbpol.2015.04.021

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Tshwane University of Technology, Arcadia, Pretoria, South Africa for the Ph.D. bursary provided to Mrs. PN Omo-Okoro and to CSIR, Pretoria, for providing a good working environment. Mrs. PN Omo-Okoro is grateful to Miss. Alissa Kriel for her assistance with some of the characterization analyses and to Dr. Alin Ionas for his useful insights during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan O. Okonkwo.

Ethics declarations

Conflict of interest

There is no financial or commercial conflict of interests to be declared by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omo-Okoro, P.N., Maepa, C.E., Daso, A.P. et al. Microwave-Assisted Synthesis and Characterization of an Agriculturally Derived Silver Nanocomposite and Its Derivatives. Waste Biomass Valor 11, 2247–2259 (2020). https://doi.org/10.1007/s12649-018-0523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0523-3

Keywords

Navigation