Skip to main content

Advertisement

Log in

Effect of Oil Content on Biogas Production, Process Performance and Stability of Food Waste Anaerobic Digestion

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The primary cause of anaerobic digester failure includes accumulation of inhibitory substances and intermediate products such as volatile fatty acids (VFAs), free ammonia (NH3 +), and ammonium (NH4 +). They (except VFAs) are however required as essential nutrients for bacteria growth. The current study specifically investigated the effect of oil content on the biogas production and the stability of anaerobic digestion of food waste. Two lab scale reactors were designed with different organic loading rates and feeding adjustment of used oil addition to testing the effects of lipids on biodegradation and biogas production. The results indicate that, at 2.0 g VS L−1 d−1, the addition of oil (5% v/v), caused the reactor failure, whereas, at 4.0 g VS L−1 d−1, the reactor remained stable for 10 days before the accumulation of VFAs, which resulted in low pH, and thus reduced the biogas and methane production. The addition of NaOH to reactivate the reactors can only improve pH, alkalinity and negatively increased viscosity, but there was no significant effect on biogas production and VFAs concentration. An effective solution to reactivate the reactors was achieved by recirculating 50% of both reactor’s effluent back to the reactors. This resulted in biogas recovery and stable process performance of the reactors. Surprisingly, NH4 +–N remained stable (1400 mg L−1) throughout the period, far less than the critical concentration of 3000 mg L−1. On the contrary, the low NH4 +–N couldn’t contribute to buffering the reactor’s high VFA concentration during the unstable period, thereby raising new questions on its roles in anaerobic digestion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, W., Lang, Q., Fang, M., Li, X., Bah, H., Dong, H., Dong, R.: Combined effect of crude fat content and initial substrate concentration on batch anaerobic digestion characteristics of food waste. Bioresour. Technol. 232, 304–312 (2017). https://doi.org/10.1016/j.biortech.2017.02.039

    Article  Google Scholar 

  2. Chen, X., Romano, R.T., Zhang, R.: Anaerobic digestion of food wastes for biogas production. Int. J. Agric. Biol. Eng. 3, 61–72 (2010)

    Google Scholar 

  3. Sun, Y., Wang, D., Yan, J., Qiao, W., Wang, W., Zhu, T.: Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes. Waste Manag. 34, 1025–1034 (2014). https://doi.org/10.1016/j.wasman.2013.07.018

    Article  Google Scholar 

  4. Gamble, P.F., Zhang, R., El-mashad, H.M., Hartman, K., Wang, F.: Research Into Design and Modeling of Anaerobic Digestion Process Applied to Municipal Solid Wastes. (2015). https://doi.org/10.1016/j.biortech.2006.02.039

    Article  Google Scholar 

  5. Meng, Y., Li, S., Yuan, H., Zou, D., Liu, Y., Zhu, B., Chufo, A., Jaffar, M., Li, X.: Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresour. Technol. 185, 7–13 (2015). https://doi.org/10.1016/j.biortech.2015.02.036

    Article  Google Scholar 

  6. Wang, H., Fotidis, I.A., Angelidaki, I.: Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria. FEMS Microbiol. Ecol. (2015). https://doi.org/10.1093/femsec/fiv130

    Article  Google Scholar 

  7. Gunders, D.: Wasted: how America is losing up to 40 percent of its food from farm to fork to landfill. NRDC Issue Pap. 1–26 (2012).

  8. Epa: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2010. Www.Epa.Gov. 1–481 (2012).

  9. Sun, H., Wu, S., Dong, R.: Monitoring volatile fatty acids and carbonate alkalinity in anaerobic digestion: titration methodologies. Chem. Eng. Technol. 39, 599–610 (2016). https://doi.org/10.1002/ceat.201500293

    Article  Google Scholar 

  10. Lin, C.S.K., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., Luque, R.: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 6, 426 (2013). https://doi.org/10.1039/c2ee23440h

    Article  Google Scholar 

  11. Zhang, T., Mao, C., Zhai, N., Wang, X., Yang, G.: Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Manag. 35, 119–126 (2015). https://doi.org/10.1016/j.wasman.2014.09.004

    Article  Google Scholar 

  12. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  13. Cho, H.S., Moon, H.S., Lim, J.Y., Kim, J.Y.: Effect of long chain fatty acids removal as a pretreatment on the anaerobic digestion of food waste. J. Mater. Cycles Waste Manag. 15, 82–89 (2013). https://doi.org/10.1007/s10163-012-0092-7

    Article  Google Scholar 

  14. Wang, B., Nges, I.A., Nistor, M., Liu, J.: Determination of methane yield of cellulose using different experimental setups. Water Sci. Technol. 70, 599–604 (2014). https://doi.org/10.2166/wst.2014.275

    Article  Google Scholar 

  15. Fotidis, I.A., Karakashev, D., Kotsopoulos, T.A., Martzopoulos, G.G., Angelidaki, I.: Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition. FEMS Microbiol. Ecol. (2013). https://doi.org/10.1111/j.1574-6941.2012.01456.x

    Article  Google Scholar 

  16. Moestedt, J., Müller, B., Westerholm, M., Schnürer, A.: Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microb. Biotechnol. (2016). https://doi.org/10.1111/1751-7915.12330

    Article  Google Scholar 

  17. Rajagopal, R., Massé, D.I., Singh, G.: A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 143, 632–641 (2013)

    Article  Google Scholar 

  18. Alves, M., Vieira, M., Álvares, J., Pereira, R., Pereira, M., Mota, M.: Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: oleic acid toxicity and biodegradability. Water Res. 35, 264–270 (2001). https://doi.org/10.1016/S0043-1354(00)00242-6

    Article  Google Scholar 

  19. Astals, S., Batstone, D.J., Mata-Alvarez, J., Jensen, P.D.: Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresour. Technol. 169, 421–427 (2014). https://doi.org/10.1016/j.biortech.2014.07.024

    Article  Google Scholar 

  20. Pastor, L., Ruiz, L., Pascual, A., Ruiz, B.: Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production. Appl. Energy 107, 438–445 (2013). https://doi.org/10.1016/j.apenergy.2013.02.055

    Article  Google Scholar 

  21. Alves, M.M., Pereira, M.A., Sousa, D.Z., Cavaleiro, A.J., Picavet, M., Smidt, H., Stams, A.J.M.: Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microb. Biotechnol. 2, 538–550 (2009). https://doi.org/10.1111/j.1751-7915.2009.00100.x

    Article  Google Scholar 

  22. Rasit, N., Idris, A., Harun, R., Wan Ab Karim Ghani, W.A.: Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: an overview. Renew. Sustain. Energy Rev. 45, 351–358 (2015). https://doi.org/10.1016/j.rser.2015.01.066

    Article  Google Scholar 

  23. Davidsson, Å, Lövstedt, C., la Cour Jansen, J., Gruvberger, C., Aspegren, H.: Co-digestion of grease trap sludge and sewage sludge. Waste Manag. 28, 986–992 (2008). https://doi.org/10.1016/j.wasman.2007.03.024

    Article  Google Scholar 

  24. Kim, J., Kang, C.-M.: Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate. Bioresour. Technol. 189, 409–412 (2015). https://doi.org/10.1016/j.biortech.2015.04.028

    Article  Google Scholar 

  25. Kafle, G.K., Kim, S.H., Shin, B.S.: Anaerobic digestion treatment for the mixture of Chinese cabbage waste juice and swine manure. J. Biosyst. Eng. 37, 58–64 (2012)

    Article  Google Scholar 

  26. Luo, G., Angelidaki, I.: Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl. Microbiol. Biotechnol. 97, 1373–1381 (2012). https://doi.org/10.1007/s00253-012-4547-5

    Article  Google Scholar 

  27. Cirne, D.G., Paloumet, X., Björnsson, L., Alves, M.M., Mattiasson, B.: Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew. Energy 32, 965–975 (2007). https://doi.org/10.1016/j.renene.2006.04.003

    Article  Google Scholar 

  28. Kim, M., Ahn, Y.H., Speece, R.E.: Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res. (2002). https://doi.org/10.1016/S0043-1354(02)00147-1

    Article  Google Scholar 

  29. Mata-Alvarez, J., Dosta, J., Romero-Güiza, M.S., Fonoll, X., Peces, M., Astals, S.: A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 36, 412–427 (2014). https://doi.org/10.1016/j.rser.2014.04.039

    Article  Google Scholar 

  30. Long, J.H., Aziz, T.N., Reyes, F.L.D.L., Ducoste, J.J.: Anaerobic co-digestion of fat, oil, and grease (FOG): a review of gas production and process limitations. Process Saf. Environ. Prot. 90, 231–245 (2012). https://doi.org/10.1016/j.psep.2011.10.001

    Article  Google Scholar 

  31. Alanya, S., Yilmazel, Y.D., Park, C., Willis, J.L., Keaney, J., Kohl, P.M., Hunt, J.A., Duran, M.: Anaerobic co-digestion of sewage sludge and primary clarifier skimmings for increased biogas production. Water Sci. Technol. 67, 174–179 (2013). https://doi.org/10.2166/wst.2012.550

    Article  Google Scholar 

  32. Nghiem, L.D., Koch, K., Bolzonella, D., Drewes, J.E.: Full scale co-digestion of wastewater sludge and food waste: bottlenecks and possibilities. Renew. Sustain. Energy Rev. 72, 354–362 (2017). https://doi.org/10.1016/j.rser.2017.01.062

    Article  Google Scholar 

  33. Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B., Flotats, X.: Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresour. Technol. 102, 2219–2227 (2011). https://doi.org/10.1016/j.biortech.2010.09.121

    Article  Google Scholar 

  34. Hendriksen, H.V., Ahring, B.K.: Effects of ammonia on growth and morphology of thermophilic hydrogen-oxidizing methanogenic bacteria. FEMS Microb Ecol. (1991). https://doi.org/10.1111/j.1574-6968.1991.tb04730.x

    Article  Google Scholar 

  35. Nielsen, H.B., Uellendahl, H., Ahring, B.K.: Regulation and optimization of the biogas process: propionate as a key parameter. Biomass Bioenergy (2007). https://doi.org/10.1016/j.biombioe.2007.04.004

    Article  Google Scholar 

  36. Alibardi, L., Cossu, R.: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag. 36, 147–155 (2015). https://doi.org/10.1016/j.wasman.2014.11.019

    Article  Google Scholar 

  37. Alibardi, L., Cossu, R.: Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag. 47, 69–77 (2016). https://doi.org/10.1016/j.wasman.2015.07.049

    Article  Google Scholar 

  38. Algapani, D.E., Qiao, W., Su, M., Wandera, S.M., Adani, F.: Bioresource Technology Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process. Bioresour. Technol. 216, 768–777 (2016). https://doi.org/10.1016/j.biortech.2016.06.016

    Article  Google Scholar 

  39. Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., Cecchi, F.: Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energy 55, 260–265 (2013). https://doi.org/10.1016/j.renene.2012.12.044

    Article  Google Scholar 

  40. Nielsen, H.B., Mladenovska, Z., Westermann, P., Ahring, B.K.: Comparison of two-stage thermophilic (55 degree) anaerobic digestion with one-stage thermophilic (55 degree) digestion of cattle manure. Biotechnol Bioeng. (2004). https://doi.org/10.1002/bit.20037

    Article  Google Scholar 

  41. APHA: Standard Methods for the Examination of Water and Wastewater. Public Health Association Ic, Washington DC (2005)

    Google Scholar 

  42. Nordmann, W.: Die Überwachung der Schlammfaulung. KA-Informationen für das Betriebspersonal, Beilage zur Korrespondenz Abwasser. 3, 77 (1977)

  43. Raposo, F., Rubia, M.A.D., Fernandez-Cegri, V., Borja, R.: Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. (2011). https://doi.org/10.1016/j.rser.2011.09.008

    Article  Google Scholar 

  44. Borja, R., Rincón, B., Raposo, F., Domínguez, J.R., Millán, F., Martín, A.: Mesophilic anaerobic digestion in a fluidised-bed reactor of wastewater from the production of protein isolates from chickpea flour. Process Biochem. 39, 1913–1921 (2004). https://doi.org/10.1016/j.procbio.2003.09.022

    Article  Google Scholar 

  45. Lossie, U., Pütz, P.: Targeted control of biogas plants with the help of FOS / TAC. Pract. Rep. Hach-Lange. (2008)

  46. Ferguson, R.M., Coulon, F., Villa, R.: Organic loading rate: a promising microbial management tool in anaerobic digestion. Water Res. 100, 348–356 (2016). https://doi.org/10.1016/J.WATRES.2016.05.009

    Article  Google Scholar 

  47. Yi, J., Dong, B., Jin, J., Dai, X.: Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PLoS ONE (2014). https://doi.org/10.1371/journal.pone.0102548

    Article  Google Scholar 

  48. Wang, B., Strömberg, S., Li, C., Nges, I.A., Nistor, M., Deng, L., Liu, J.: Effects of substrate concentration on methane potential and degradation kinetics in batch anaerobic digestion. Bioresour. Technol. 194, 240–246 (2015). https://doi.org/10.1016/j.biortech.2015.07.034

    Article  Google Scholar 

  49. Angelidaki, I., Ahring, B.K.: Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. 37, 808–812 (1992). https://doi.org/10.1007/BF00174850

    Article  Google Scholar 

  50. Banks, C.J., Zhang, Y., Jiang, Y., Heaven, S.: Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour. Technol. 104, 127–135 (2012). https://doi.org/10.1016/j.biortech.2011.10.068

    Article  Google Scholar 

  51. Banks, C.J., Chesshire, M., Heaven, S., Arnold, R.: Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresour. Technol. 102, 612–620 (2011). https://doi.org/10.1016/j.biortech.2010.08.005

    Article  Google Scholar 

  52. Wu, S., Ni, P., Li, J., Sun, H., Wang, Y., Luo, H., Dach, J., Dong, R.: Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: dynamics of ammonium accumulation and mitigation control. Bioresour. Technol. 205, 75–81 (2016). https://doi.org/10.1016/j.biortech.2016.01.021

    Article  Google Scholar 

  53. Yu, L., Ma, J., Chen, S.: Numerical simulation of mechanical mixing in high solid anaerobic digester. Bioresour. Technol. 102, 1012–1018 (2011). https://doi.org/10.1016/J.BIORTECH.2010.09.079

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the support from School of Civil Engineering, University College Dublin; Tuition scholarship support from Student Universal Support Ireland (SUSI); Centre RAPSODEE, Campus Jarlard, Albi, F-81013 Cedex 09, France and China Agricultural University, Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture. The author gratefully acknowledges colleagues and supervisor’s contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olumide Wesley Awe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awe, O.W., Lu, J., Wu, S. et al. Effect of Oil Content on Biogas Production, Process Performance and Stability of Food Waste Anaerobic Digestion. Waste Biomass Valor 9, 2295–2306 (2018). https://doi.org/10.1007/s12649-017-0179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-0179-4

Keywords