Abstract
The primary cause of anaerobic digester failure includes accumulation of inhibitory substances and intermediate products such as volatile fatty acids (VFAs), free ammonia (NH3 +), and ammonium (NH4 +). They (except VFAs) are however required as essential nutrients for bacteria growth. The current study specifically investigated the effect of oil content on the biogas production and the stability of anaerobic digestion of food waste. Two lab scale reactors were designed with different organic loading rates and feeding adjustment of used oil addition to testing the effects of lipids on biodegradation and biogas production. The results indicate that, at 2.0 g VS L−1 d−1, the addition of oil (5% v/v), caused the reactor failure, whereas, at 4.0 g VS L−1 d−1, the reactor remained stable for 10 days before the accumulation of VFAs, which resulted in low pH, and thus reduced the biogas and methane production. The addition of NaOH to reactivate the reactors can only improve pH, alkalinity and negatively increased viscosity, but there was no significant effect on biogas production and VFAs concentration. An effective solution to reactivate the reactors was achieved by recirculating 50% of both reactor’s effluent back to the reactors. This resulted in biogas recovery and stable process performance of the reactors. Surprisingly, NH4 +–N remained stable (1400 mg L−1) throughout the period, far less than the critical concentration of 3000 mg L−1. On the contrary, the low NH4 +–N couldn’t contribute to buffering the reactor’s high VFA concentration during the unstable period, thereby raising new questions on its roles in anaerobic digestion process.









Similar content being viewed by others
References
Zhang, W., Lang, Q., Fang, M., Li, X., Bah, H., Dong, H., Dong, R.: Combined effect of crude fat content and initial substrate concentration on batch anaerobic digestion characteristics of food waste. Bioresour. Technol. 232, 304–312 (2017). https://doi.org/10.1016/j.biortech.2017.02.039
Chen, X., Romano, R.T., Zhang, R.: Anaerobic digestion of food wastes for biogas production. Int. J. Agric. Biol. Eng. 3, 61–72 (2010)
Sun, Y., Wang, D., Yan, J., Qiao, W., Wang, W., Zhu, T.: Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes. Waste Manag. 34, 1025–1034 (2014). https://doi.org/10.1016/j.wasman.2013.07.018
Gamble, P.F., Zhang, R., El-mashad, H.M., Hartman, K., Wang, F.: Research Into Design and Modeling of Anaerobic Digestion Process Applied to Municipal Solid Wastes. (2015). https://doi.org/10.1016/j.biortech.2006.02.039
Meng, Y., Li, S., Yuan, H., Zou, D., Liu, Y., Zhu, B., Chufo, A., Jaffar, M., Li, X.: Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresour. Technol. 185, 7–13 (2015). https://doi.org/10.1016/j.biortech.2015.02.036
Wang, H., Fotidis, I.A., Angelidaki, I.: Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria. FEMS Microbiol. Ecol. (2015). https://doi.org/10.1093/femsec/fiv130
Gunders, D.: Wasted: how America is losing up to 40 percent of its food from farm to fork to landfill. NRDC Issue Pap. 1–26 (2012).
Epa: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2010. Www.Epa.Gov. 1–481 (2012).
Sun, H., Wu, S., Dong, R.: Monitoring volatile fatty acids and carbonate alkalinity in anaerobic digestion: titration methodologies. Chem. Eng. Technol. 39, 599–610 (2016). https://doi.org/10.1002/ceat.201500293
Lin, C.S.K., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., Luque, R.: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 6, 426 (2013). https://doi.org/10.1039/c2ee23440h
Zhang, T., Mao, C., Zhai, N., Wang, X., Yang, G.: Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Manag. 35, 119–126 (2015). https://doi.org/10.1016/j.wasman.2014.09.004
Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057
Cho, H.S., Moon, H.S., Lim, J.Y., Kim, J.Y.: Effect of long chain fatty acids removal as a pretreatment on the anaerobic digestion of food waste. J. Mater. Cycles Waste Manag. 15, 82–89 (2013). https://doi.org/10.1007/s10163-012-0092-7
Wang, B., Nges, I.A., Nistor, M., Liu, J.: Determination of methane yield of cellulose using different experimental setups. Water Sci. Technol. 70, 599–604 (2014). https://doi.org/10.2166/wst.2014.275
Fotidis, I.A., Karakashev, D., Kotsopoulos, T.A., Martzopoulos, G.G., Angelidaki, I.: Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition. FEMS Microbiol. Ecol. (2013). https://doi.org/10.1111/j.1574-6941.2012.01456.x
Moestedt, J., Müller, B., Westerholm, M., Schnürer, A.: Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microb. Biotechnol. (2016). https://doi.org/10.1111/1751-7915.12330
Rajagopal, R., Massé, D.I., Singh, G.: A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 143, 632–641 (2013)
Alves, M., Vieira, M., Álvares, J., Pereira, R., Pereira, M., Mota, M.: Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: oleic acid toxicity and biodegradability. Water Res. 35, 264–270 (2001). https://doi.org/10.1016/S0043-1354(00)00242-6
Astals, S., Batstone, D.J., Mata-Alvarez, J., Jensen, P.D.: Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresour. Technol. 169, 421–427 (2014). https://doi.org/10.1016/j.biortech.2014.07.024
Pastor, L., Ruiz, L., Pascual, A., Ruiz, B.: Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production. Appl. Energy 107, 438–445 (2013). https://doi.org/10.1016/j.apenergy.2013.02.055
Alves, M.M., Pereira, M.A., Sousa, D.Z., Cavaleiro, A.J., Picavet, M., Smidt, H., Stams, A.J.M.: Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microb. Biotechnol. 2, 538–550 (2009). https://doi.org/10.1111/j.1751-7915.2009.00100.x
Rasit, N., Idris, A., Harun, R., Wan Ab Karim Ghani, W.A.: Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: an overview. Renew. Sustain. Energy Rev. 45, 351–358 (2015). https://doi.org/10.1016/j.rser.2015.01.066
Davidsson, Å, Lövstedt, C., la Cour Jansen, J., Gruvberger, C., Aspegren, H.: Co-digestion of grease trap sludge and sewage sludge. Waste Manag. 28, 986–992 (2008). https://doi.org/10.1016/j.wasman.2007.03.024
Kim, J., Kang, C.-M.: Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate. Bioresour. Technol. 189, 409–412 (2015). https://doi.org/10.1016/j.biortech.2015.04.028
Kafle, G.K., Kim, S.H., Shin, B.S.: Anaerobic digestion treatment for the mixture of Chinese cabbage waste juice and swine manure. J. Biosyst. Eng. 37, 58–64 (2012)
Luo, G., Angelidaki, I.: Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl. Microbiol. Biotechnol. 97, 1373–1381 (2012). https://doi.org/10.1007/s00253-012-4547-5
Cirne, D.G., Paloumet, X., Björnsson, L., Alves, M.M., Mattiasson, B.: Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew. Energy 32, 965–975 (2007). https://doi.org/10.1016/j.renene.2006.04.003
Kim, M., Ahn, Y.H., Speece, R.E.: Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res. (2002). https://doi.org/10.1016/S0043-1354(02)00147-1
Mata-Alvarez, J., Dosta, J., Romero-Güiza, M.S., Fonoll, X., Peces, M., Astals, S.: A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 36, 412–427 (2014). https://doi.org/10.1016/j.rser.2014.04.039
Long, J.H., Aziz, T.N., Reyes, F.L.D.L., Ducoste, J.J.: Anaerobic co-digestion of fat, oil, and grease (FOG): a review of gas production and process limitations. Process Saf. Environ. Prot. 90, 231–245 (2012). https://doi.org/10.1016/j.psep.2011.10.001
Alanya, S., Yilmazel, Y.D., Park, C., Willis, J.L., Keaney, J., Kohl, P.M., Hunt, J.A., Duran, M.: Anaerobic co-digestion of sewage sludge and primary clarifier skimmings for increased biogas production. Water Sci. Technol. 67, 174–179 (2013). https://doi.org/10.2166/wst.2012.550
Nghiem, L.D., Koch, K., Bolzonella, D., Drewes, J.E.: Full scale co-digestion of wastewater sludge and food waste: bottlenecks and possibilities. Renew. Sustain. Energy Rev. 72, 354–362 (2017). https://doi.org/10.1016/j.rser.2017.01.062
Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B., Flotats, X.: Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresour. Technol. 102, 2219–2227 (2011). https://doi.org/10.1016/j.biortech.2010.09.121
Hendriksen, H.V., Ahring, B.K.: Effects of ammonia on growth and morphology of thermophilic hydrogen-oxidizing methanogenic bacteria. FEMS Microb Ecol. (1991). https://doi.org/10.1111/j.1574-6968.1991.tb04730.x
Nielsen, H.B., Uellendahl, H., Ahring, B.K.: Regulation and optimization of the biogas process: propionate as a key parameter. Biomass Bioenergy (2007). https://doi.org/10.1016/j.biombioe.2007.04.004
Alibardi, L., Cossu, R.: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag. 36, 147–155 (2015). https://doi.org/10.1016/j.wasman.2014.11.019
Alibardi, L., Cossu, R.: Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag. 47, 69–77 (2016). https://doi.org/10.1016/j.wasman.2015.07.049
Algapani, D.E., Qiao, W., Su, M., Wandera, S.M., Adani, F.: Bioresource Technology Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process. Bioresour. Technol. 216, 768–777 (2016). https://doi.org/10.1016/j.biortech.2016.06.016
Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., Cecchi, F.: Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energy 55, 260–265 (2013). https://doi.org/10.1016/j.renene.2012.12.044
Nielsen, H.B., Mladenovska, Z., Westermann, P., Ahring, B.K.: Comparison of two-stage thermophilic (55 degree) anaerobic digestion with one-stage thermophilic (55 degree) digestion of cattle manure. Biotechnol Bioeng. (2004). https://doi.org/10.1002/bit.20037
APHA: Standard Methods for the Examination of Water and Wastewater. Public Health Association Ic, Washington DC (2005)
Nordmann, W.: Die Überwachung der Schlammfaulung. KA-Informationen für das Betriebspersonal, Beilage zur Korrespondenz Abwasser. 3, 77 (1977)
Raposo, F., Rubia, M.A.D., Fernandez-Cegri, V., Borja, R.: Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. (2011). https://doi.org/10.1016/j.rser.2011.09.008
Borja, R., Rincón, B., Raposo, F., Domínguez, J.R., Millán, F., Martín, A.: Mesophilic anaerobic digestion in a fluidised-bed reactor of wastewater from the production of protein isolates from chickpea flour. Process Biochem. 39, 1913–1921 (2004). https://doi.org/10.1016/j.procbio.2003.09.022
Lossie, U., Pütz, P.: Targeted control of biogas plants with the help of FOS / TAC. Pract. Rep. Hach-Lange. (2008)
Ferguson, R.M., Coulon, F., Villa, R.: Organic loading rate: a promising microbial management tool in anaerobic digestion. Water Res. 100, 348–356 (2016). https://doi.org/10.1016/J.WATRES.2016.05.009
Yi, J., Dong, B., Jin, J., Dai, X.: Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PLoS ONE (2014). https://doi.org/10.1371/journal.pone.0102548
Wang, B., Strömberg, S., Li, C., Nges, I.A., Nistor, M., Deng, L., Liu, J.: Effects of substrate concentration on methane potential and degradation kinetics in batch anaerobic digestion. Bioresour. Technol. 194, 240–246 (2015). https://doi.org/10.1016/j.biortech.2015.07.034
Angelidaki, I., Ahring, B.K.: Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. 37, 808–812 (1992). https://doi.org/10.1007/BF00174850
Banks, C.J., Zhang, Y., Jiang, Y., Heaven, S.: Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour. Technol. 104, 127–135 (2012). https://doi.org/10.1016/j.biortech.2011.10.068
Banks, C.J., Chesshire, M., Heaven, S., Arnold, R.: Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresour. Technol. 102, 612–620 (2011). https://doi.org/10.1016/j.biortech.2010.08.005
Wu, S., Ni, P., Li, J., Sun, H., Wang, Y., Luo, H., Dach, J., Dong, R.: Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: dynamics of ammonium accumulation and mitigation control. Bioresour. Technol. 205, 75–81 (2016). https://doi.org/10.1016/j.biortech.2016.01.021
Yu, L., Ma, J., Chen, S.: Numerical simulation of mechanical mixing in high solid anaerobic digester. Bioresour. Technol. 102, 1012–1018 (2011). https://doi.org/10.1016/J.BIORTECH.2010.09.079
Acknowledgements
The first author acknowledges the support from School of Civil Engineering, University College Dublin; Tuition scholarship support from Student Universal Support Ireland (SUSI); Centre RAPSODEE, Campus Jarlard, Albi, F-81013 Cedex 09, France and China Agricultural University, Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture. The author gratefully acknowledges colleagues and supervisor’s contributions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Awe, O.W., Lu, J., Wu, S. et al. Effect of Oil Content on Biogas Production, Process Performance and Stability of Food Waste Anaerobic Digestion. Waste Biomass Valor 9, 2295–2306 (2018). https://doi.org/10.1007/s12649-017-0179-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-017-0179-4