Skip to main content
Log in

Biological Processes as Promoting Way for Both Treatment and Valorization of Dairy Industry Effluents

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Dairy industry effluents were usually characterized by their high organic matter content. Cheese whey is the most wide studied dairy reject. Though, the high polluting dairy wastewater including product losses and process effluents are also problematic and they need to be treated separately. Despite the quite efficiency of physico-chemical processes, polluting load removal is typically insufficient and the treatment should be completed by a biological process. Lactose bioconversion to single cell proteins; lactic acid; citric acid; biopolymer, bioethanol or even hydrogen seem to be promoting alternatives, not only for the treatment but also for the recovery of valuable products. Anaerobic digestion using dark and/or photofermentation and microbial fuel cells exhibited several advantageous comparing to the conventional dairy wastewater processing pathways. Then, the microbial material role for the bioconversion is crucial and it should be done according to the treatment purposes. Saccharomyces, Klyveromyces and Candida strains are widely used for dairy wastewaters polluting load removal. Lactic acid bacteria are used for their biotechnological proprieties. Some mixed cultures proved to result in more efficient treatment results with valuable products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Britz, T.J., van Schalkwyk, C., Hung, Y.T.: Treatment of dairy processing wastewaters. In: Wang, L.K., Hung, Y.T., Lo, H.H., Yapijakis, C.. (eds.) Waste Treatment in Food Processing Industry, pp. 1–28. Taylor & Francis Group, Boca Raton (2006)

    Google Scholar 

  2. Prazeres, A.R., Carvalho, F., Rivas, J.: Cheese whey management: a review. J. Environ. Manage. 110, 48–68 (2012). doi:10.1016/j.jenvman.2012.05.018

    Article  Google Scholar 

  3. Demirel, B., Yenigun, O., Onay, T.T.: Anaerobic treatment of dairy wastewaters: a review. Process Biochem. 40(8), 2583–2595 (2005). doi:10.1016/j.procbio.2004.12.015

    Article  Google Scholar 

  4. Vidal, G., Carvalho, A., Méndez, R., Lema, J.M.: Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresour. Technol. 74(3), 231–239 (2000). doi:10.1016/S0960-8524(00)00015-8

    Article  Google Scholar 

  5. Mirabella, N., Castellani, V., Sala, S.: Current options for the valorization of food manufacturing waste: a review. J. Clean Prod. 65, 28–41 (2014). doi:10.1016/j.jclepro.2013.10.051

    Article  Google Scholar 

  6. Strydom, J.P., Mostert, J.F., Britz, T.J.: Effluent production and disposal in the South African dairy industry: a postal survey. Water SA. 19(3), 253–258 (1993)

    Google Scholar 

  7. Burgaud, J.L.: Les eaux résiduaires dans l’industrie laitière.. Le Lait 49(487), 417–433 (1969)

  8. Muriuki, H.G.: Milk and dairy products, Post-harvest losses and food safety in Sub-Saharan Africa and the Near East. In: FAO Prevention of Food Losses Programme. pp. 1–60. Food and Agriculture Organization, (2003)

  9. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., Meybeck, A.: Global Food Losses and Food Waste. FAO, Rome (2011)

    Google Scholar 

  10. Kantor, L.S., Lipton, K., Manchester, A., Oliveira, V.: Estimating and addressing America’s food losses. Food Rev. (1997).

  11. VITO-CMPP: Meilleures techniques disponibles (MTD) pour l’industrie laitière au Maroc. Institut flamand pour la recherche technologique (VITO, Belgique), le Centre marocain de production propre (CMPP), (2012)

  12. Gürsoy, Ö., Kinik, Ö.: Off-flavours in milks and milk products. J. Eng. Sci. 9(1), 79–88 (2003)

    Google Scholar 

  13. Gutierrez, A.M.: Effects of Lipid Oxidation Initiators and Antioxidants on the Total Antioxidant Capacity of Milk and Oxidation Products During Storage. Iowa State University, Lowa (2014)

    Google Scholar 

  14. Kasmi, M., Hamdi, M., Trabelsi, I.: Eco-friendly process combining physical–chemical and biological technics for the fermented dairy products waste pretreatment and reuse. Water Sci. Technol. 1–9 (2016). doi:10.2166/wst.2016.477

  15. Stavropoulos, K.P., Kopsahelis, A., Zafiri, C., Kornaros, M.: Effect of pH on continuous biohydrogen production from end-of-life dairy products (EoL-DPs) via dark fermentation. Waste Biomass Valor. 7(4), 753–764 (2016). doi:10.1007/s12649-016-9548-7

    Article  Google Scholar 

  16. Alonso, S., Herrero, M., Rendueles, M., Díaz, M.: Physiological heterogeneity in Lactobacillus casei fermentations on residual yoghurt whey. Process Biochem. 49(5), 732–739 (2014). doi:10.1016/j.procbio.2014.01.033

    Article  Google Scholar 

  17. Alonso, S., Herrero, M., Rendueles, M., Diaz, M.: Residual yoghurt whey for lactic acid production. Biomass Bioenerg. 34(7), 931–938 (2010). doi:10.1016/j.biombioe.2010.01.041

    Article  Google Scholar 

  18. Kasmi, M., Snoussi, M., Dahmeni, A., Ben Amor, M., Hamdi, M., Trabelsi, I.: Use of thermal coagulation, separation, and fermentation processes for dairy wastewater treatment. Des. Water Treat. 57(28), 13166–13174 (2016). doi:10.1080/19443994.2015.1056835

    Article  Google Scholar 

  19. Lapointe-Vignola, C., FTLQ, F.d.t.l.d.Q.: Science et technologie du lait: transformation du lait. Presses Inter Polytechnique, Québec, Canada (2002)

  20. Ali, A.H., Jasem, N.A., Attia, H.G.: The use of anaerobic digestion process in the treatment of dairy wastewater by Microorganisms derived from sewage wasted sludge. J Eng. Develop. 16(4), 181–194 (2012).

    Google Scholar 

  21. Bhumesh, S.B., Sai, V.S.: Utilization and treatment of dairy effluent through biogas generation: a case study. Int. J. Environ. Sci. 1, 1620–1630 (2011)

    Google Scholar 

  22. FIL105-ISO488: Lait - Détermination de la teneur en matière grasse - Butyromètres Gerber. (2008)

  23. FAO: The agroprocessing industry and economic development, the state of food and agriculture In: Nations, F.A.O. (eds.) FAO Agriculture Series. vol. 30, p. 273. FAO, Rome, (1997)

  24. Scholten, R.H.J., van der Peet-Schwering, C.M.C., Verstegen, M.W.A., den Hartog, L.A., Schrama, J.W., Vesseur, P.C.: Fermented co-products and fermented compound diets for pigs: a review. Anim. Feed Sci. Tech. 82(1–2), 1–19 (1999). doi: 10.1016/S0377-8401(99)00096-6

    Article  Google Scholar 

  25. Group, W.B: Dairy industry. In: Pollution Prevention and Abatement Handbook, pp. 295–297. World Bank Publications, Washington (1999)

    Google Scholar 

  26. Fergala, M.: The anaerobic treatment of complex wastewater. (1995)

  27. Robinson, T.: The real value of dairy waste. Dairy Ind. Int. 62(3), 21–23 (1997)

    Google Scholar 

  28. Tocchi, C., Federici, E., Scargetta, S., D’Annibale, A., Petruccioli, M.: Dairy wastewater polluting load and treatment performances of an industrial three-cascade-reactor plant. Process Biochem. 48(5–6), 941–944 (2013). doi:10.1016/j.procbio.2013.04.009

    Article  Google Scholar 

  29. Sustarsic, M.: Wastewater Treatment: Understanding the Activated Sludge Process. CEP. pp. 26–29. AIChe, San Francisco (2009)

    Google Scholar 

  30. Gude, V.G.: Wastewater treatment in microbial fuel cells: an overview. J. Clean. Prod. 122, 287–307 (2016). doi:10.1016/j.jclepro.2016.02.022

    Article  Google Scholar 

  31. Seesuriyachan, P., Kuntiya, A., Sasaki, K., Techapun, C.: Biocoagulation of dairy wastewater by Lactobacillus casei TISTR 1500 for protein recovery using micro-aerobic sequencing batch reactor (micro-aerobic SBR). Process Biochem. 44(4), 406–411 (2009). doi:10.1016/j.procbio.2008.12.006

    Article  Google Scholar 

  32. Gray, N.F.: Biology of Wastewater Treatment. Imperial College Press, London (2004)

    Book  Google Scholar 

  33. Ayeche, R.: Treatment by coagulation-flocculation of dairy wastewater with the residual lime of National Algerian Industrial Gases Company (NIGC-Annaba). Energ. Procedia. 18, 147–156 (2012)

    Article  Google Scholar 

  34. Wendorff, W.L.: Treatment of dairy wastes. In: Marth, E.H., Steele, J.L. (eds.) Applied Dairy Microbiology, pp. 681–704. Headquarters Marcel Dekker, Inc., New York (2001)

    Google Scholar 

  35. Arvanitoyannis, I.S., Kassaveti, A.: 13 - Dairy waste management: treatment methods and potential uses of treated waste. In: Arvanitoyannis, I.S. (ed.) Waste Management for the Food Industries, pp. 801–860. Academic Press, Amsterdam (2008)

    Chapter  Google Scholar 

  36. Gannoun, H., Khelifi, E., Bouallagui, H., Touhami, Y., Hamdi, M.: Ecological clarification of cheese whey prior to anaerobic digestion in upflow anaerobic filter. Bioresour. Technol. 99(14), 6105–6111 (2008). doi:10.1016/j.biortech.2007.12.037

    Article  Google Scholar 

  37. Rivas, J., Prazeres, A.R., Carvalho, F.: Aerobic biodegradation of precoagulated cheese whey wastewater. J. Agr. Food Chem. 59(6), 2511–2517 (2011). doi:10.1021/jf104252w

    Article  Google Scholar 

  38. Fauquant, J., Vieco, E., Brule, G., Maubois, J.L.: Clarification des lactosérums doux par agrégation thermocalcique de la matière grasse résiduelle. Lait 65(647–648), 1–20 (1985).

    Article  Google Scholar 

  39. Yadav, J.S.S., Yan, S., Pilli, S., Kumar, L., Tyagi, R.D., Surampalli, R.Y.: Cheese whey: a potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv. 33(6, Part 1), 756–774 (2015). doi:10.1016/j.biotechadv.2015.07.002

    Article  Google Scholar 

  40. De León-Rodríguez, A., Rivera-Pastrana, D., Medina-Rivero, E., Flores-Flores, J.L., Estrada-Baltazar, A., Ordóñez-Acevedo, L.G., de la Rosa, A.P.B.: Production of penicillin acylase by a recombinant Escherichia coli using cheese whey as substrate and inducer. Biomol. Eng. 23(6), 299–305 (2006). doi:10.1016/j.bioeng.2006.09.003

    Article  Google Scholar 

  41. Guimarães, P.M.R., Teixeira, J.A., Domingues, L.: Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol. Adv. 28(3), 375–384 (2010). doi:10.1016/j.biotechadv.2010.02.002

    Article  Google Scholar 

  42. Panesar, P.S., Kumari, S., Panesar, R.: Biotechnological approaches for the production of prebiotics and their potential applications. Crit. Rev. Biotechnol. 33(4), 345–364 (2013). doi:10.3109/07388551.2012.709482

    Article  Google Scholar 

  43. Wan, C., Li, Y., Shahbazi, A., Xiu, S.: Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. Appl. Biochem. Biotechnol. 145(1–3), 111–119 (2008). doi:10.1007/s12010-007-8031-0

    Article  Google Scholar 

  44. Siso, M.I.G: The biotechnological utilization of cheese whey: a review. Bioresour. Technol. 57(1), 1–11 (1996). doi:10.1016/0960-8524(96)00036-3

    Article  Google Scholar 

  45. Zadow, J.G.: Lactose hydrolysis. In: Zadow, J.G. (ed.) Whey and Lactose Processing. pp. 361–408. Springer, Dordrecht (1992)

    Chapter  Google Scholar 

  46. Lembke, A., Moebus, O., Grasshoff, A., Reuter, H.: Experiments in the production of single cell protein from whey in a semi technical experimental plant. Berichte ueber Landwirtschaft Sonderheft 192, 571–598 (1975)

    Google Scholar 

  47. Lazaro, C.Z., Bosio, M., dos Santos Ferreira, J., Varesche, M.B.A., Silva, E.L.: The biological hydrogen production potential of agroindustrial residues. Waste Biomass Valor 6(3), 273–280 (2015). doi:10.1007/s12649-015-9353-8

    Article  Google Scholar 

  48. Fukuhara, H.: Kluyveromyces lactis: a retrospective. FEMS Yeast Res. 6(3), 323–324 (2006). doi:10.1111/j.1567-1364.2005.00012.x

    Article  Google Scholar 

  49. Das, M., Raychaudhuri, A., Ghosh, S.K.: Supply chain of bioethanol production from whey: a review. Procedia Environ. Sci. 35, 833–846 (2016). doi:10.1016/j.proenv.2016.07.100

    Article  Google Scholar 

  50. Lu, W., Wang, Z., Wang, X., Yuan, Z.: Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresour. Technol. 192, 382–388 (2015). doi:10.1016/j.biortech.2015.05.094

    Article  Google Scholar 

  51. Passero, M.L., Cragin, B., Hall, A.R., Staley, N., Coats, E.R., McDonald, A.G., Feris, K.: Ultraviolet radiation pre-treatment modifies dairy wastewater, improving its utility as a medium for algal cultivation. Algal Res. 6, 98–110 (2014). doi:10.1016/j.algal.2014.09.008

    Article  Google Scholar 

  52. Ntaikou, I., Antonopoulou, G., Lyberatos, G.: Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valor 1(1), 21–39 (2010). doi:10.1007/s12649-009-9001-2

    Article  Google Scholar 

  53. Lo, Y.-C., Chen, C.-Y., Lee, C.-M., Chang, J.-S.: Photo fermentative hydrogen production using dominant components (acetate, lactate, and butyrate) in dark fermentation effluents. Inter. J. Hydrogen Energy 36(21), 14059–14068 (2011). doi:10.1016/j.ijhydene.2011.04.148

    Article  Google Scholar 

  54. Argun, H., Kargi, F., Kapdan, I.K.: Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. Int. J. Hydrogen Energy 33(24), 7405–7412 (2008). doi:10.1016/j.ijhydene.2008.09.059

    Article  Google Scholar 

  55. Guwy, A.J., Dinsdale, R.M., Kim, J.R., Massanet-Nicolau, J., Premier, G.: Fermentative biohydrogen production systems integration. Bioresour. Technol. 102(18), 8534–8542 (2011). doi:10.1016/j.biortech.2011.04.051

    Article  Google Scholar 

  56. Elakkiya, E., Matheswaran, M.: Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in Microbial Fuel Cell. Bioresour. Technol. 136, 407–412 (2013). doi:10.1016/j.biortech.2013.02.113

    Article  Google Scholar 

  57. Faria, A., Gonçalves, L., Peixoto, J.M., Peixoto, L., Brito, A.G., Martins, G.: Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell. J. Clean. Prod. (2016). doi:10.1016/j.jclepro.2016.04.027

    Google Scholar 

  58. van Lier, J.B., Tilche, A., Ahring, B.K., Macarie, H., Moletta, R., Dohanyos, M., Pol, L.W., Lens, P., Verstraete, W.: New perspectives in anaerobic digestion. Water Sci. Technol. 43(1), 1–18 (2001)

    Google Scholar 

  59. Gelegenis, J., Georgakakis, D., Angelidaki, I., Mavris, V.: Optimization of biogas production by co-digesting whey with diluted poultry manure. Renew. Energy 32(13), 2147–2160 (2007). doi:10.1016/j.renene.2006.11.015

    Article  Google Scholar 

  60. Brown, N., Güttler, J., Shilton, A.: Overcoming the challenges of full scale anaerobic co-digestion of casein whey. Renew. Energy 96, 425–432 (2016). doi:10.1016/j.renene.2016.04.044

    Article  Google Scholar 

  61. Gomez-Romero, J., Gonzalez-Garcia, A., Chairez, I., Torres, L., García-Peña, E.I.: Selective adaptation of an anaerobic microbial community: biohydrogen production by co-digestion of cheese whey and vegetables fruit waste. Int. J. Hydrogen Energy 39(24), 12541–12550 (2014). doi:10.1016/j.ijhydene.2014.06.050

    Article  Google Scholar 

  62. Rico, C., Muñoz, N., Fernández, J., Rico, J.L.: High-load anaerobic co-digestion of cheese whey and liquid fraction of dairy manure in a one-stage UASB process: limits in co-substrates ratio and organic loading rate. Chem. Eng. J. 262, 794–802 (2015). doi:10.1016/j.cej.2014.10.050

    Article  Google Scholar 

  63. Girotto, F., Alibardi, L., Cossu, R.: Food waste generation and industrial uses: a review. Waste Manage. 45, 32–41 (2015). doi:10.1016/j.wasman.2015.06.008

    Article  Google Scholar 

  64. Cantrell, K.B., Ducey, T., Ro, K.S., Hunt, P.G.: Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol. 99(17), 7941–7953 (2008). doi:10.1016/j.biortech.2008.02.061

    Article  Google Scholar 

  65. Xu, L., Zhao, Y., Doherty, L., Hu, Y., Hao, X.: The integrated processes for wastewater treatment based on the principle of microbial fuel cells: a review. Crit. Rev. Environ. Sci. Technol. 46(1), 60–91 (2016). doi:10.1080/10643389.2015.1061884

    Article  Google Scholar 

  66. Dias, J.M., Lemos, P.C., Serafim, L.S., Oliveira, C., Eiroa, M., Albuquerque, M.G., Ramos, A.M., Oliveira, R., Reis, M.A.: Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol. Biosci. 6(11), 885–906 (2006). doi:10.1002/mabi.200600112

    Article  Google Scholar 

  67. El Aasar, S.: Submerged fermentation of cheese whey and molasses for citric acid production by Aspergillus niger. Int. J. Agr. Biol. 8, 463–467 (2006)

    Google Scholar 

  68. Morales, J., Choi, J.-S., Kim, D.-S.: Production rate of propionic acid in fermentation of cheese whey with enzyme inhibitors. Environ. Prog. 25(3), 228–234 (2006). doi:10.1002/ep.10153

    Article  Google Scholar 

  69. Mostafa, N.A.: Production of acetic acid and glycerol from salted and dried whey in a membrane cell recycle bioreactor. Energ. Convers. Manage. 42(9), 1133–1142 (2001). doi:10.1016/S0196-8904(00)00121-7

    Article  Google Scholar 

  70. Panesar, P.S., Kennedy, J.F., Gandhi, D.N., Bunko, K.: Bioutilisation of whey for lactic acid production. Food Chem. 105(1), 1–14 (2007). doi:10.1016/j.foodchem.2007.03.035

    Article  Google Scholar 

  71. Ahn, J.H., Jang, Y.-S., Lee, S.Y.: Production of succinic acid by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 42, 54–66 (2016). doi:10.1016/j.copbio.2016.02.034

    Article  Google Scholar 

  72. Lee, P.C., Lee, W.G., Kwon, S., Lee, S.Y., Chang, H.N.: Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Appl. Microbiol. Biotechnol. 54(1), 23–27 (2000)

    Article  Google Scholar 

  73. Koller, M., Sandholzer, D., Salerno, A., Braunegg, G., Narodoslawsky, M.: Biopolymer from industrial residues: Life cycle assessment of poly(hydroxyalkanoates) from whey. Resour. Conserv. Recy. 73, 64–71 (2013). doi:10.1016/j.resconrec.2013.01.017

    Article  Google Scholar 

  74. Mesomo, M., Silva, M.F., Boni, G., Padilha, F.F., Mazutti, M., Mossi, A., de Oliveira, D., Cansian, R.L., Di Luccio, M., Treichel, H.: Xanthan gum produced by Xanthomonas campestris from cheese whey: production optimisation and rheological characterisation. J. Sci. Food Agr. 89(14), 2440–2445 (2009). doi:10.1002/jsfa.3743

    Article  Google Scholar 

  75. Santos, M., Rodrigues, A., Teixeira, J.A.: Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f). Biochem. Eng. J. 25, 1–6 (2005)

    Article  Google Scholar 

  76. Valentino, F., Riccardi, C., Campanari, S., Pomata, D., Majone, M.: Fate of β-hexachlorocyclohexane in the mixed microbial cultures (MMCs) three-stage polyhydroxyalkanoates (PHA) production process from cheese whey. Bioresour. Technol. 192, 304–311 (2015). doi:10.1016/j.biortech.2015.05.083

    Article  Google Scholar 

  77. Zhou, F., Wu, Z., Chen, C., Han, J., Ai, L., Guo, B.: Exopolysaccharides produced by Rhizobium radiobacter S10 in whey and their rheological properties. Food Hydrocolloid. 36, 362–368 (2014). doi:10.1016/j.foodhyd.2013.08.016

    Article  Google Scholar 

  78. Anvari, M., Khayati, G.: Submerged yeast fermentation of cheese whey for protein production and nutritional profile analysis. Adv. J. Food Sci. Technol. 3, 122–135 (2011)

    Google Scholar 

  79. Schultz, N., Chang, L., Hauck, A., Reuss, M., Syldatk, C.: Microbial production of single-cell protein from deproteinized whey concentrates. Appl. Microbiol. Biotechnol. 69(5), 515–520 (2006). doi:10.1007/s00253-005-0012-z

    Article  Google Scholar 

  80. Kasmi, M., Chatti, A., Hamdi, M., Trabelsi, I.: Eco-friendly process for soft drink industries wastewater reuse as growth medium for Saccharomyces cerevisiae production. Clean Techn. Environ. Policy. 18(7), 2265–2278 (2016). doi:10.1007/s10098-016-1144-9

    Article  Google Scholar 

  81. Bekatorou, A., Psarianos, C., Koutinas, A.A.: Production of food grade yeasts. Food Technol. Biotechnol. 44(3), 407–415 (2006).

    Google Scholar 

  82. Ghaly, A.E., Kamal, M., Avery, A.: Influence of temperature rise on kinetic parameters during batch propagation of Kluyveromyces fragilis in cheese whey under ambient conditions. World J. Microbiol. Biotechnol. 19(7), 741–749 (2003). doi:10.1023/A:1025148022934

    Article  Google Scholar 

  83. Cristiani-Urbina, E., Netzahuatl-Muñoz, A.R., Manriquez-Rojas, F.J., Juárez-Ramírez, C., Ruiz-Ordaz, N., Galíndez-Mayer, J.: Batch and fed-batch cultures for the treatment of whey with mixed yeast cultures. Process Biochem. 35(7), 649–657 (2000). doi:10.1016/S0032-9592(99)00116-8

    Article  Google Scholar 

  84. Mawson, A.J.: Bioconversions for whey utilization and waste abatement. Bioresour. Technol. 47(3), 195–203 (1994). doi:10.1016/0960-8524(94)90180-5

    Article  Google Scholar 

  85. Grba, S., Stehlik-Tomas, V., Stanzer, D., Vahcic, N., Skrlin, A.: Selection of yeast strain Kluyveromyces marxianus for alcohol and biomass production on whey. Chem. Biochem. Eng. Q. 16, 13–16 (2002).

    Google Scholar 

  86. Fonseca, G.G., Heinzle, E., Wittmann, C., Gombert, A.K.: The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79(3), 339–354 (2008). doi:10.1007/s00253-008-1458-6

    Article  Google Scholar 

  87. Ghaly, A.E., Ben-Hassan, R.M., Mansour, M.H., Nassar, M.A.: Modeling batch production of single cell protein from cheese whey. Appl. Biochem. Biotech. 43(1), 15–24 (1993). doi:10.1007/BF02916426

    Article  Google Scholar 

  88. Ghaly, A.E., Kamal, M.A.: Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Res. 38(3), 631–644 (2004). doi:10.1016/j.watres.2003.10.019

    Article  Google Scholar 

  89. Castrillo, J.I., de Miguel, I., Ugalde, U.O.: Proton production and consumption pathways in yeast metabolism. A chemostat culture analysis. Yeast 11(14), 1353–1365 (1995). doi:10.1002/yea.320111404

    Article  Google Scholar 

  90. Lukondeh, T., Ashbolt, N.J., Rogers, P.L.: Fed-batch fermentation for production of Kluyveromyces marxianus FII 510700 cultivated on a lactose-based medium. J. Ind. Microbiol. Biotechnol. 32(7), 284–288 (2005). doi:10.1007/s10295-005-0245-y

    Article  Google Scholar 

  91. Battock, M., Azam-Ali, S.: Fermented fruits and vegetables: a global perspective. In: FAO Agricultural Services Bulletin. vol. 134. Food and Agriculture Organization of the United Nations, FAO, Rome (1998)

  92. Munawar, R.A., Irfan, M., Nadeem, M., Syed, Q.A., Siddique, Z.H.: Biosynthesis of single cell biomass of Candida utilis by submerged fermentation. Pak. J. Sci. 62, 1–5 (2010)

    Google Scholar 

  93. Rajoka, M.I., Khan, S.H., Jabbar, M.A., Awan, M.S., Hashmi, A.S.: Kinetics of batch single cell protein production from rice polishings with Candida utilis in continuously aerated tank reactors. Bioresour. Technol. 97(15), 1934–1941 (2006). doi:10.1016/j.biortech.2005.08.019

    Article  Google Scholar 

  94. Dellaglio, F., Felis, G.E., Torriani, S., Sørensen, K., Johansen, E.: Genomic characterisation of starter cultures. In: Tamime, A.. (ed.) Probiotic Dairy Products, pp. 16–38. Blackwell Publishing Ltd., Oxford (2005)

    Google Scholar 

  95. Scardovi, V.: Genus Bifidobacterium. In: Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G. (eds.) Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1418–1434. Williams and Wilkins. Publ., Baltimore (1986)

  96. Carlotti, A., Jacob, F., Perrier, J., Poncet, S.: Yeast production from crude sweet whey by a mixed culture of Candida kefyr LY496 andCandida valida LY497. Biotechnol. Lett. 13(6), 437–440 (1991). doi:10.1007/BF01030997

    Article  Google Scholar 

  97. Shuler, M.L., Kargi, F.: Bioprocess Engineering: Basic Concepts. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  98. Ben-Hassan, R.M., Ghaly, A.E.: Continuous production of single cell protein from cheese whey by Kluyveromyces fragilis. Transact. ASAE 384, 1113–1120 (1995).

    Google Scholar 

  99. Ghaly, A.E., Kamal, M., Correia, L.R.: Kinetic modelling of continuous submerged fermentation of cheese whey for single cell protein production. Bioresour. Technol. 96(10), 1143–1152 (2005). doi:10.1016/j.biortech.2004.09.027

    Article  Google Scholar 

  100. Pearce, C.I., Lloyd, J.R., Guthrie, J.T.: The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigment. 58(3), 179–196 (2003). doi:10.1016/S0143-7208(03)00064-0

    Article  Google Scholar 

  101. Yadav, J.S., Bezawada, J., Elharche, S., Yan, S., Tyagi, R.D., Surampalli, R.Y.: Simultaneous single-cell protein production and COD removal with characterization of residual protein and intermediate metabolites during whey fermentation by K. marxianus. Bioprocess Biosyst. Eng. 37(6), 1017–1029 (2013). doi:10.1007/s00449-013-1072-6

    Article  Google Scholar 

  102. Bastianetto, S.: Probiotiques. (2014). http://www.passeportsante.net/fr/Solutions/PlantesSupplements/Fiche.aspx?doc=probiotiques_ps. Accessed 11 Jan 2016

  103. Benkerroum, N., Tamime, A.Y.: Technology transfer of some Moroccan traditional dairy products (lben, jben and smen) to small industrial scale. Food Microbiol. 21(4), 399–413 (2004). doi:10.1016/j.fm.2003.08.006

    Article  Google Scholar 

  104. Gadaga, T.H., Mutukumira, A.N., Narvhus, J.A.: Enumeration and identification of yeasts isolated from Zimbabwean traditional fermented milk. Int. Dairy J. 10(7), 459–466 (2000). doi:10.1016/S0958-6946(00)00070-4

    Article  Google Scholar 

  105. Yadav, J.S., Bezawada, J., Yan, S., Tyagi, R.D., Surampalli, R.Y.: Candida krusei: biotechnological potentials and concerns about its safety. Can. J. Microbiol. 58(8), 937–952 (2012). doi:10.1139/w2012-077

    Article  Google Scholar 

  106. Domingues, L., Guimarães, P.M.R., Oliveira, C.: Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation. Bioeng. Bugs 1(3), 164–171 (2010). doi:10.4161/bbug.1.3.10619

    Article  Google Scholar 

  107. Lane, M.M., Morrissey, J.P.: Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal. Biol. Rev. 24(1–2), 17–26 (2010). doi:10.1016/j.fbr.2010.01.001

    Google Scholar 

  108. Gana, S., Touzi, A.: Valorisation du Lactosérum par la Production de Levures Lactiques avec les Procédés de Fermentation Discontinue et Continue. Rev. Energ. Ren. : Production et Valorisation – Biomasse, 51–58 (2001).

  109. Moeini, H., Nahvi, I., Tavassoli, M.: Improvement of SCP production and BOD removal of whey with mixed yeast culture. Electron. J. Biotechnol. 7(6–7) (2004)

  110. El-Samragy, Y.A., Zall, R.R.: The influence of sodium chloride on the activity of yeast in the production of single cell protein in whey permeate. J. Dairy Sci. 71(5), 1135–1140 (1988). doi:10.3168/jds.S0022-0302(88)79666-6

    Article  Google Scholar 

  111. Daverey, A., Pakshirajan, K.: Pretreatment of Synthetic dairy wastewater using the sophorolipid-producing yeast Candida bombicola. Appl. Biochem. Biotechnol. 163(6), 720–728 (2011). doi:10.1007/s12010-010-9077-y

    Article  Google Scholar 

  112. Kandler, O., Weiss, N.: Regular, nonsporing Gram-positive rods. In: Sneath, H.A., Mair, N.S., Sharpe, M.E., Holt, J.. (eds.) Bergey’s Manual of Determinative Bacteriology, vol. 2, pp. 1208–1234. Williams & Wilkins, Baltimore (1989)

  113. Makras, L., Van Acker, G., De Vuyst, L: Lactobacillus paracasei subsp. paracasei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Appl. Environ. Microbiol. 71(11), 6531–6537 (2005). doi:10.1128/aem.71.11.6531-6537.2005

    Article  Google Scholar 

  114. Gutierrez, N.A., Debarr, A.D., Maddox, I.S.: Production of diacetyl from whey permeate using Lactococcus lactis subsp. lactis. J. Ferment. Bioeng. 81(2), 183–184 (1996). doi:10.1016/0922-338X(96)87602-1

    Article  Google Scholar 

  115. Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., Keller, J., Buisman, C.J.N: Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 26(8), 450–459 (2008). doi:10.1016/j.tibtech.2008.04.008

    Article  Google Scholar 

  116. Wei, J., Liang, P., Cao, X., Huang, X.: Use of inexpensive semicoke and activated carbon as biocathode in microbial fuel cells. Bioresour. Technol. 102(22), 10431–10435 (2011). doi:10.1016/j.biortech.2011.08.088

    Article  Google Scholar 

  117. Patel, A.K., Vaisnav, N., Mathur, A., Gupta, R., Tuli, D.K.: Whey waste as potential feedstock for biohydrogen production. Renew. Energ. 98, 221–225 (2016). doi:10.1016/j.renene.2016.02.039

    Article  Google Scholar 

  118. Chatzipaschali, A.A., Stamatis, A.G.: Biotechnological utilization with a focus on anaerobic treatment of cheese whey: current Status And prospects. Energies 5(9), 3492–3525 (2012).

    Article  Google Scholar 

  119. Spãlãtelu, C.: Biotechnological valorisation of whey. Innov. Romanian. Food Biotechnol. 10, 1–8 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Kasmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasmi, M. Biological Processes as Promoting Way for Both Treatment and Valorization of Dairy Industry Effluents. Waste Biomass Valor 9, 195–209 (2018). https://doi.org/10.1007/s12649-016-9795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9795-7

Keywords

Navigation