Skip to main content

Advertisement

Log in

Protein-Based Hydrogels Derived from Industrial Byproducts Containing Collagen, Keratin, Zein and Soy

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Proteins are renewable resources rich in animals and plants and can be extracted from the agricultural and breeding industry byproducts and wastes. Collagen, keratin, zein and soy proteins are found in these byproducts and are extensively studied for protein-based hydrogels, which are especially attractive as a promising biomaterial due to their excellent biocompatibility, biodegradability, nontoxicity and low immune response. In recent years, hydrogels have been playing an increasingly important role in tissue engineering, drug delivery, nutrient encapsulation, controlled release of pesticides and other fields. The diversity of the amino acid composition of proteins leads to significant differences in their processing strategies, and the properties of the resultant hydrogels. This review covers the extraction methods for collagen, keratin, zein and soy proteins from various industrial byproducts, the synthesis of hydrogels from these protein sources, as well as their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Del. Rev. 54(1), 3–12 (2002)

    Article  Google Scholar 

  2. Campoccia, D., Doherty, P., Radice, M., Brun, P., Abatangelo, G., Williams, D.F.: Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19(23), 2101–2127 (1998)

    Article  Google Scholar 

  3. Prestwich, G.D., Marecak, D.M., Marecek, J.F., Vercruysse, K.P., Ziebell, M.R.: Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J. Control. Release 53(1), 93–103 (1998)

    Article  Google Scholar 

  4. Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1880 (2001)

    Article  Google Scholar 

  5. Demitri, C., Del Sole, R., Scalera, F., Sannino, A., Vasapollo, G., Maffezzoli, A., Ambrosio, L., Nicolais, L.: Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J. Appl. Polym. Sci. 110(4), 2453–2460 (2008)

    Article  Google Scholar 

  6. Yu, L., Yan, D., Sun, G., Gu, L.: Preparation and characterization of pH-sensitive hydrogel fibers based on hydrolyzed-polyacrylonitrile/soy protein. J. Appl. Polym. Sci. 108(2), 1100–1108 (2008)

    Article  Google Scholar 

  7. Anderson, T.J., Lamsal, B.P.: Development of new method for extraction of α-Zein from corn gluten meal using different solvents. Cereal Chem. 88(4), 356 (2011)

    Article  Google Scholar 

  8. Zhong, Q., Tian, H., Zivanovic, S.: Encapsulation of fish oil in solid zein particles by liquid-liquid dispersion. J. Food Process. Preserv. 33(2), 255–270 (2009)

    Article  Google Scholar 

  9. Kopeček, J.: Hydrogel biomaterials: a smart future? Biomaterials 28(34), 5185–5192 (2007)

    Article  Google Scholar 

  10. Shi, W., Dumont, M.-J., Ly, E.B.: Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur. Polym. J. 54, 172–180 (2014)

    Article  Google Scholar 

  11. van Hest, J.C.: Protein-based materials, toward a new level of structural control. Chem. Commun. 19, 1897–1904 (2001)

    Article  Google Scholar 

  12. Kaplan, D., McGrath, K.: Protein-Based Materials, pp. 133–177. Springer, Berlin (2012)

    Google Scholar 

  13. Ma, L., Yang, Y., Yao, J., Shao, Z., Huang, Y., Chen, X.: Selective chemical modification of soy protein for a tough and applicable plant protein-based material. J. Mater. Chem. B 3, 5241–5248 (2015)

  14. Bai, X., Zheng, H., Fang, R., Wang, T., Hou, X., Li, Y., Chen, X., Tian, W.: Fabrication of engineered heart tissue grafts from alginate/collagen barium composite microbeads. Biomed. Mater. 6(4), 045002 (2011)

    Article  Google Scholar 

  15. Pace, L.A., Plate, J.F., Mannava, S., Barnwell, J.C., Koman, L.A., Li, Z., Smith, T.L., Van Dyke, M.: A human hair keratin hydrogel scaffold enhances median nerve regeneration in nonhuman primates: an electrophysiological and histological study. Tissue Eng. pt. A 20(3–4), 507–517 (2014)

    Google Scholar 

  16. Vallejos, N., Gonzalez, G., Troncoso, E., Zuniga, R.N.: Acid and enzyme-aided collagen extraction from the byssus of chilean mussels (mytilus chilensis): effect of process parameters on extraction performance. Food Biophys. 9(4), 322–331 (2014)

    Article  Google Scholar 

  17. Chien, K.B., Chung, E.J., Shah, R.N.: Investigation of soy protein hydrogels for biomedical applications: materials characterization, drug release, and biocompatibility. J. Biomater. Appl. 28(7), 1085–1096 (2014)

    Article  Google Scholar 

  18. Wang, N., Lin, W., Mu, C.-D.: Progress in extraction and purification of collagen from animal skin. Leather Sci. Eng. 16(2), 42–47 (2006)

    Google Scholar 

  19. Walters, B.D., Stegemann, J.P.: Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater. 10(4), 1488–1501 (2014)

    Article  Google Scholar 

  20. Liu, D., Wei, G., Li, T., Hu, J., Lu, N., Regenstein, J.M., Zhou, P.: Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin. Food Chem. 172, 836–843 (2015)

    Article  Google Scholar 

  21. Zhang, Y., Olsen, K., Grossi, A., Otte, J.: Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chem. 141(3), 2343–2354 (2013)

    Article  Google Scholar 

  22. Bella, J., Eaton, M., Brodsky, B., Berman, H.M.: Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 266(5182), 75–81 (1994)

    Article  Google Scholar 

  23. Foegeding, E., Lanier, T., Hultin, H.: Characteristics of edible muscle tissues. Food Chem. 3(15), 902 (1996)

    Google Scholar 

  24. Gómez-Guillén, M., Giménez, B., López-Caballero, M.A., Montero, M.: Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloid. 25(8), 1813–1827 (2011)

    Article  Google Scholar 

  25. Meschia, M., Pifarotti, P., Bernasconi, F., Magatti, F., Riva, D., Kocjancic, E.: Porcine skin collagen implants to prevent anterior vaginal wall prolapse recurrence: a multicenter, randomized study. J. Urol. 177(1), 192–195 (2007)

    Article  Google Scholar 

  26. Gómez-Estaca, J., Montero, P., Fernández-Martín, F., Gómez-Guillén, M.: Physico-chemical and film-forming properties of bovine-hide and tuna-skin gelatin: a comparative study. J. Food Eng. 90(4), 480–486 (2009)

    Article  Google Scholar 

  27. Mori, H., Tone, Y., Shimizu, K., Zikihara, K., Tokutomi, S., Ida, T., Ihara, H., Hara, M.: Studies on fish scale collagen of Pacific saury (Cololabis saira). Mater. Sci. Eng., C 33(1), 174–181 (2013)

    Article  Google Scholar 

  28. Yaxin, S., Huan, W.C.W.S.R.: Study on the preparation of collagen chelating calcium using shellfish. J. Chin. Inst. Food Sci. Technol. 5, 056 (2012)

    Google Scholar 

  29. Madry, H., Rey-Rico, A., Venkatesan, J.K., Johnstone, B., Cucchiarini, M.: Transforming growth factor beta- releasing scaffolds for cartilage tissue engineering. Tissue Eng. pt. B-Rev. 20(2), 106–125 (2014)

    Article  Google Scholar 

  30. Auger, F., Rouabhia, M., Goulet, F., Berthod, F., Moulin, V., Germain, L.: Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Med. Biol. Eng. Comput. 36(6), 801–812 (1998)

    Article  Google Scholar 

  31. Seliktar, D., Black, R.A., Vito, R.P., Nerem, R.M.: Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28(4), 351–362 (2000)

    Article  Google Scholar 

  32. Kaufmann, P., Heimrath, S., Kim, B., Mooney, D.: Highly porous polymer matrices as a three-dimensional culture system for hepatocytes. Cell Transplant. 6(5), 463–468 (1997)

    Article  Google Scholar 

  33. Doillon, C.J., Drouin, R., Côte, M.F., Dallaire, N., Pageau, J.F., Laroche, G.: Chemical inactivators as sterilization agents for bovine collagen materials. J. Biomed. Mater. Res. 37(2), 212–221 (1997)

    Article  Google Scholar 

  34. Sanborn, T., Gibbs, H., Brinker, J., Knopf, W., Kosinksi, E., Roubin, G.: A multicenter randomized trial comparing a percutaneous collagen hemostasis device with conventional manual compression after diagnostic angiography and angioplasty. J. Invasive Cardiol. 11, 6B–13B (1999)

    Google Scholar 

  35. Dunn, M.W., Miyata, T., Rubin, A.L., Stenzel, K.H.: Collagen soft contact lens. U.S. Patent 4223984, Sep 23, 1980

  36. Miyata, T.: Collagen contact lens. U.S. Patent 4264155, Apr 28, 1981

  37. Chen, D.-C., Lai, Y.-L., Lee, S.-Y., Hung, S.-L., Chen, H.-L.: Osteoblastic response to collagen scaffolds varied in freezing temperature and glutaraldehyde crosslinking. J. Biomed. Mater. Res. A 80A(2), 399–409 (2007)

    Article  Google Scholar 

  38. Sahiner, M., Alpaslan, D., Bitlisli, B.O.: Collagen-based hydrogel films as drug-delivery devices with antimicrobial properties. Polym. Bull. 71(11), 3017–3033 (2014)

    Article  Google Scholar 

  39. Cheng, Y., Lu, J., Liu, S., Zhao, P., Lu, G., Chen, J.: The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr. Polym. 107, 57–64 (2014)

    Article  Google Scholar 

  40. Zheng, W., Zhang, W., Jiang, X.: Biomimetic collagen nanofibrous materials for bone tissue engineering. Adv. Eng. Mater. 12(9), B451–B466 (2010)

    Article  Google Scholar 

  41. Gómez-Guillén, M., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., Montero, P.: Fish gelatin: a renewable material for developing active biodegradable films. Trends Food Sci. Technol. 20(1), 3–16 (2009)

    Article  Google Scholar 

  42. Cansu, Ü., Boran, G.: Optimization of a multi-step procedure for isolation of chicken bone collagen. Korean J. Food. Sci. Anim. 35(4), 431–440 (2015)

    Article  Google Scholar 

  43. Chen, S., Ikoma, T., Ogawa, N., Migita, S., Kobayashi, H., Hanagata, N.: In vitro formation and thermal transition of novel hybrid fibrils from type I fish scale collagen and type I porcine collagen. Sci. Technol. Adv, Mat (2016)

    Google Scholar 

  44. Francis, G., Thomas, J.: Isolation and chemical characterization of collagen in bovine pulmonary tissues. Biochem. J. 145(2), 287–297 (1975)

    Article  Google Scholar 

  45. Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., Shahidi, F.: Isolation and properties of acid- and pepsin-soluble collagen from the skin of blacktip shark (Carcharhinus limbatus). Eur. Food Res. Technol. 230(3), 475–483 (2010)

    Article  Google Scholar 

  46. Nalinanon, S., Benjakul, S., Visessanguan, W., Kishimura, H.: Use of pepsin for collagen extraction from the skin of bigeye snapper (Priacanthus tayenus). Food Chem. 104(2), 593–601 (2007)

    Article  Google Scholar 

  47. Rajan, N., Habermehl, J., Coté, M.-F., Doillon, C.J., Mantovani, D.: Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc. 1(6), 2753–2758 (2006)

    Article  Google Scholar 

  48. DeVictor, P., Allard, R., Perrier, E., Huc, A.: Unpigmented fish skin, particularly from flat fish, as a novel industrial source of collagen, extraction method, collagen and biomaterial thereby obtained. U.S. Patent 5420248, May 30, 1995

  49. Antoine, E.E., Vlachos, P.P., Rylander, M.N.: Review of collagen i hydrogels for bioengineered tissue microenvironments: characterization of Mechanics, Structure, and Transport. Tissue Eng. pt. B-Rev. 20(6), 683–696 (2014)

    Article  Google Scholar 

  50. Zhu, h., Zhang, h., Wang, S., Teng, X.: Preparation method of low molecular weight collagen peptide effervescent tablet.C.N. Patent 102888436, Jun 4, 2014

  51. Wang, Y.: Method for extracting collagens from bovine achilles tendon.C.N. Patent 103468771, Jul 15, 2015

  52. Candage, R., Jones, K., Luchette, F.A., Sinacore, J.M., Vandevender, D., Reed Ii, R.L.: Use of human acellular dermal matrix for hernia repair: Friend or foe? Surgery 144(4), 703–711 (2008)

    Article  Google Scholar 

  53. Patton Jr., J.H., Berry, S., Kralovich, K.A.: Use of human acellular dermal matrix in complex and contaminated abdominal wall reconstructions. Am. J. Surg. 193(3), 360–363 (2007)

    Article  Google Scholar 

  54. Livesey, S.A., Herndon, D.N., Hollyoak, M.A., Atkinson, Y.H., Nag, A.: Transplanted acellular allograft dermal matrix: potential as a template for the reconstruction of viable dermis. Transplantation 60(1), 1–9 (1995)

    Article  Google Scholar 

  55. Takami, Y., Matsuda, T., Yoshitake, M., Hanumadass, M., Walter, R.: Dispase/detergent treated dermal matrix as a dermal substitute. Burns 22(3), 182–190 (1996)

    Article  Google Scholar 

  56. Griffey, E.S., Livesey, S.A., Schiff, C.M., Boerboom, L.E.: Particulate acellular tissue matrix. U.S Patent 7358284, Apr 15, 2008

  57. Barrows, T.H., MacIntyre, P., Washenik, K.J.: Hair follicle graft from tissue engineered skin. U.S. Patent 9023380, May 5, 2015

  58. Fisher, J., Ingham, E.: Ultrasonic modification of soft tissue matrices. U.S. Patent 7754232, Jul 13, 2010

  59. Gough, J.E., Scotchford, C.A., Downes, S.: Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res. 61(1), 121–130 (2002)

    Article  Google Scholar 

  60. Weadock, K.S., Miller, E.J., Bellincampi, L.D., Zawadsky, J.P., Dunn, M.G.: Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J. Biomed. Mater. Res. 29(11), 1373–1379 (1995)

    Article  Google Scholar 

  61. Zhang, X., Zhang, Y., Chen, W., Xu, L., Wei, S., Zheng, Y., Zhai, M.: Biological behavior of fibroblast on contractile collagen hydrogel crosslinked by gamma-irradiation. J. Biomed. Mater. Res. A 102(8), 2669–2679 (2014)

    Article  Google Scholar 

  62. Chandran, P.L., Paik, D.C., Holmes, J.W.: Structural mechanism for alteration of collagen gel mechanics by glutaraldehyde crosslinking. Connect. Tissue Res. 53(4), 285–297 (2012)

    Article  Google Scholar 

  63. Bou-Akl, T., Banglmaier, R., Miller, R., VandeVord, P.: Effect of crosslinking on the mechanical properties of mineralized and non-mineralized collagen fibers. J. Biomed. Mater. Res. A 101A(9), 2507–2514 (2013)

    Article  Google Scholar 

  64. Ahn, J.-I., Kuffova, L., Merrett, K., Mitra, D., Forrester, J.V., Li, F., Griffith, M.: Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater. 9(8), 7796–7805 (2013)

    Article  Google Scholar 

  65. Sanami, M., Sweeney, I., Shtein, Z., Meirovich, S., Sorushanova, A., Mullen, A.M., Miraftab, M., Shoseyov, O., O’Dowd, C., Pandit, A., Zeugolis, D.I.: The influence of poly(ethylene glycol) ether tetrasuccinimidyl glutarate on the structural, physical, and biological properties of collagen fibers. J. Biomed. Mater. Res. B 104B, 1–9 (2015)

  66. Solorio, L., Zwolinski, C., Lund, A.W., Farrell, M.J., Stegemann, J.P.: Gelatin microspheres crosslinked with genipin for local delivery of growth factors. J. Tissue Eng. Regen. Med. 4(7), 514–523 (2010)

    Article  Google Scholar 

  67. Zeugolis, D.I., Paul, R.G., Attenburrow, G.: The influence of a natural cross-linking agent (Myrica rubra) on the properties of extruded collagen fibres for tissue engineering applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 30(1), 190–195 (2010)

    Article  Google Scholar 

  68. He, L., Mu, C., Shi, J., Zhang, Q., Shi, B., Lin, W.: Modification of collagen with a natural cross-linker, procyanidin. Int. J. Biol. Macromol. 48(2), 354–359 (2011)

    Article  Google Scholar 

  69. Albu, M., Ghica, M., Leca, M., Popa, L., Borlescu, C., Cremenescu, E., Giurginca, M., Trandafir, V.: Doxycycline delivery from collagen matrices crosslinked with tannic acid. Mol. Cryst. Liq. Cryst. 523(1), 97–105 (2010)

    Article  Google Scholar 

  70. Usha, R., Ramasami, T.: Effect of crosslinking agents (basic chromium sulfate and formaldehyde) on the thermal and thermomechanical stability of rat tail tendon collagen fibre. Thermochim. Acta 356(1–2), 59–66 (2000)

    Article  Google Scholar 

  71. Cai, W., Kwok, S.W., Taulane, J.P., Goodman, M.: Metal-assisted assembly and stabilization of collagen-like triple helices. JACS 126(46), 15030–15031 (2004)

    Article  Google Scholar 

  72. Przybyla, D.E., Chmielewski, J.: Metal-triggered radial self-assembly of collagen peptide fibers. JACS 130(38), 12610–12611 (2008)

    Article  Google Scholar 

  73. Pires, M.M., Przybyla, D.E., Chmielewski, J.: A metal-collagen peptide framework for three-dimensional cell culture. Angew. Chem. Int. Ed. 48(42), 7813–7817 (2009)

    Article  Google Scholar 

  74. Xu, G., Wang, X., Deng, C., Teng, X., Suuronen, E.J., Shen, Z., Zhong, Z.: Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)–poly(ethylene glycol)–oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater. 15, 55–64 (2015)

    Article  Google Scholar 

  75. Barnes, A.L., Genever, P.G., Rimmer, S., Coles, M.C.: Collagen–Poly(N-isopropylacrylamide) Hydrogels with Tunable Properties. Biomacromolecules 17(3), 723–734 (2016)

    Article  Google Scholar 

  76. Mirazul Islam, M., Cėpla, V., He, C., Edin, J., Rakickas, T., Kobuch, K., Ruželė, Ž., Bruce Jackson, W., Rafat, M., Lohmann, C.P., Valiokas, R., Griffith, M.: Functional fabrication of recombinant human collagen–phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomater. 12, 70–80 (2015)

    Article  Google Scholar 

  77. Kim, J., Lin, B., Kim, S., Choi, B., Evseenko, D., Lee, M.: TGF-β1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. J. Biol. Eng. 9(1), 1 (2015)

    Article  Google Scholar 

  78. Bendtsen, S.T., Wei, M.: Synthesis and characterization of a novel injectable alginate–collagen–hydroxyapatite hydrogel for bone tissue regeneration. J. Mater. Chem. 3(15), 3081–3090 (2015)

    Article  Google Scholar 

  79. Yu, H.S., Jin, G.Z., Won, J.E., Wall, I., Kim, H.W.: Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering. J. Biomed. Mater. Res. A. 100(9), 2431–2440 (2012)

    Google Scholar 

  80. Alarcon, E.I., Udekwu, K.I., Noel, C.W., Gagnon, L.B.-P., Taylor, P.K., Vulesevic, B., Simpson, M.J., Gkotzis, S., Islam, M.M., Lee, C.-J.: Safety and efficacy of composite collagen–silver nanoparticle hydrogels as tissue engineering scaffolds. Nanoscale 7(44), 18789–18798 (2015)

    Article  Google Scholar 

  81. Rouse, J.G., Van Dyke, M.E.: A review of keratin-based biomaterials for biomedical applications. Materials 3(2), 999–1014 (2010)

    Article  Google Scholar 

  82. Shi, W., Dumont, M.-J.: Review: bio-based films from zein, keratin, pea, and rapeseed protein feedstocks. J. Mater. Sci. 49(5), 1915–1930 (2013)

    Article  Google Scholar 

  83. Karthikeyan, R., Balaji, S., Sehgal, P.K.: Industrial applications of keratins—a review. J. Sci. Ind. Res. India. 66(9), 710–715 (2007)

    Google Scholar 

  84. Strnad, P., Usachov, V., Debes, C., Gräter, F., Parry, D.A., Omary, M.B.: Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins. J. Cell Sci. 124(24), 4221–4232 (2011)

    Article  Google Scholar 

  85. Lee, H., Noh, K., Lee, S.C., Kwon, I.-K., Han, D.-W., Lee, I.-S., Hwang, Y.-S.: Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng. Regen. Med. 11(4), 255–265 (2014)

    Article  Google Scholar 

  86. Rad, Z.P., Tavanai, H., Moradi, A.: Production of feather keratin nanopowder through electrospraying. J. Aerosol Sci. 51, 49–56 (2012)

    Article  Google Scholar 

  87. Dowling, L., Crewther, W., Parry, D.: Secondary structure of component 8c-1 of alpha-keratin. An analysis of the amino acid sequence. Biochem. J. 236, 705–712 (1986)

    Article  Google Scholar 

  88. Wrześniewska-Tosik, K., Adamiec, J.: Biocomposites with a content of keratin from chicken feathers. Fibres Text. East. Eur. 15(1), 60 (2007)

    Google Scholar 

  89. Richter, J.R., de Guzman, R.C., Greengauz-Roberts, O.K., Van Dyke, M.: Structure–property relationships of meta-kerateine biomaterials derived from human hair. Acta Biomater. 8(1), 274–281 (2012)

    Article  Google Scholar 

  90. Cardamone, J.M., de Tunick, M.H., Onwulata, C.K.: Keratin sponge/hydrogel: I. Fabrication and characterization. Text. Res. J. 83(7), 661–670 (2013)

    Article  Google Scholar 

  91. Reichl, S.: Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 30(36), 6854–6866 (2009)

    Article  Google Scholar 

  92. Martelli, S.M., Laurindo, J.B.: Chicken feather keratin films plasticized with polyethylene glycol. Int. J. Polymer. Mater. 61(1), 17–29 (2012)

    Article  Google Scholar 

  93. Remadnia, A., Dheilly, R., Laidoudi, B., Quéneudec, M.: Use of animal proteins as foaming agent in cementitious concrete composites manufactured with recycled PET aggregates. Constr. Build. Mater. 23(10), 3118–3123 (2009)

    Article  Google Scholar 

  94. Wei, P.-B., Wang, H.-R.: Modification of feather keratin and its application in leather filling process. China Leather 3, 003 (2006)

    Google Scholar 

  95. Ozaki, Y., Takagi, Y., Mori, H., Hara, M.: Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis. Mater Sci Eng C Mater Biol Appl. 42, 146–154 (2014)

    Article  Google Scholar 

  96. Sierpinski, P., Garrett, J., Ma, J., Apel, P., Klorig, D., Smith, T., Koman, L.A., Atala, A., Van Dyke, M.: The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 29(1), 118–128 (2008)

    Article  Google Scholar 

  97. Zucherman, J.F., Hsu, K.Y., Yerby, S., Smith, R.A.: Implantable prosthetic or tissue expanding device. U.S. Patent 6783546, Aug 31, 2004

  98. Schrooyen, P.M., Dijkstra, P.J., Oberthür, R.C., Bantjes, A., Feijen, J.: Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J. Agric. Food Chem. 48(9), 4326–4334 (2000)

    Article  Google Scholar 

  99. Thompson, E., O’donnell, I.: Studies on reduced wool V. A comparison of the two major components. Aust. J. Biol. Sci. 18(6), 1207–1226 (1965)

    Article  Google Scholar 

  100. Eslahi, N., Dadashian, F., Nejad, N.H.: An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis. Prep. Biochem. Biotechnol. 43(7), 624–648 (2013)

    Article  Google Scholar 

  101. Hill, P., Brantley, H., Van Dyke, M.: Some properties of keratin biomaterials: kerateines. Biomaterials 31(4), 585–593 (2010)

    Article  Google Scholar 

  102. Kakkar, P., Madhan, B., Shanmugam, G.: Extraction and characterization of keratin from bovine hoof: a potential material for biomedical applications. SpringerPlus 3, 596 (2014)

    Article  Google Scholar 

  103. Xu, S., Zhang, C., Zhang, A., Wang, H., Rao, H., Zhang, Z.: Fabrication and biological evaluation in vivo of an injectable keratin hydrogel as filler materials. J. Bioact. Compat. Pol. 31(2), 179–190 (2015)

    Article  Google Scholar 

  104. AjaySharma, L., Ali, M.A., Love, R.M., Wilson, M.J., Dias, G.J.: Novel keratin preparation supports growth and differentiation of odontoblast-like cells. Int. Endod. J. 49(5), 471–482 (2015)

    Article  Google Scholar 

  105. Campbell, D.I., Duncan, W.J.: The effect of a keratin hydrogel coating on osseointegration: an histological comparison of coated and non-coated dental titanium implants in an ovine model. J. Maxillofac. Oral Surg. 13(2), 159–164 (2014)

    Article  Google Scholar 

  106. Van Dyke, M., Blanchard, C., Timmons, S., Siller-Jackson, A., Smith, R.: Implantable prosthetic or tissue expanding device.U.S. Patent 6849092, Feb 1, 2005

  107. Apel, P.J., Garrett, J.P., Sierpinski, P., Ma, J., Atala, A., Smith, T.L., Koman, L.A., Van Dyke, M.E.: Peripheral nerve regeneration using a keratin-based scaffold: long-term functional and histological outcomes in a mouse model. J. Hand. Surg. 33(9), 1541–1547 (2008)

    Article  Google Scholar 

  108. Bai, X., Lü, S., Cao, Z., Gao, C., Duan, H., Xu, X., Sun, L., Gao, N., Feng, C., Liu, M.: Self-reinforcing injectable hydrogel with both high water content and mechanical strength for bone repair. Chem. Eng. J. 288, 546–556 (2016)

    Article  Google Scholar 

  109. Tachibana, A., Nishikawa, Y., Nishino, M., Kaneko, S., Tanabe, T., Yamauchi, K.: Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J. Biosci. Bioeng. 102(5), 425–429 (2006)

    Article  Google Scholar 

  110. de Guzman, R.C., Saul, J.M., Ellenburg, M.D., Merrill, M.R., Coan, H.B., Smith, T.L., Van Dyke, M.E.: Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomaterials 34(6), 1644–1656 (2013)

    Article  Google Scholar 

  111. Xu, H., Cai, S., Xu, L., Yang, Y.: Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30(28), 8461–8470 (2014)

    Article  Google Scholar 

  112. Yuan, J., Geng, J., Xing, Z., Shim, K.-J., Han, I., Kim, J.-C., Kang, I.-K., Shen, J.: Novel wound dressing based on nanofibrous PHBV–keratin mats. J. Tissue Eng. Regen. Med. 9(9), 1027–1035 (2015)

    Article  Google Scholar 

  113. Tachibana, A., Furuta, Y., Takeshima, H., Tanabe, T., Yamauchi, K.: Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J. Biotechnol. 93(2), 165–170 (2002)

    Article  Google Scholar 

  114. Kurimoto, A., Tanabe, T., Tachibana, A., Yamauchi, K.: Keratin sponge: immobilization of lysozyme. J. Biosci. Bioeng. 96(3), 307–309 (2003)

    Article  Google Scholar 

  115. Shukla, R., Cheryan, M.: Zein: the industrial protein from corn. Ind. Crop. Prod. 13(3), 171–192 (2001)

    Article  Google Scholar 

  116. Delcour, J., Hoseney, R.: Principles of Cereal Science and Technology, 3rd edn, pp. 40–85. AACC International. Inc, St. Paul (2010)

    Book  Google Scholar 

  117. Bräuer, S., Meister, F., Gottlöber, R.-P., Nechwatal, A.: Preparation and thermoplastic processing of modified plant proteins. Macromol. Mater. Eng. 292(2), 176–183 (2007)

    Article  Google Scholar 

  118. Sousa, F., Luzardo-Álvarez, A., Blanco-Méndez, J., Martín-Pastor, M.: NMR techniques in drug delivery: application to zein protein complexes. Int. J. Pharm. 439(1), 41–48 (2012)

    Article  Google Scholar 

  119. Dong, F., Padua, G.W., Wang, Y.: Controlled formation of hydrophobic surfaces by self-assembly of an amphiphilic natural protein from aqueous solutions. Soft Matter 9(25), 5933–5941 (2013)

    Article  Google Scholar 

  120. De Vries, A., Nikiforidis, C.V., Scholten, E.: Natural amphiphilic proteins as tri-block Janus particles: Self-sorting into thermo-responsive gels. Epl 107(5) (2014)

  121. Tihminlioglu, F., Atik, İ.D., Özen, B.: Water vapor and oxygen-barrier performance of corn–zein coated polypropylene films. J. Food Eng. 96(3), 342–347 (2010)

    Article  Google Scholar 

  122. Reyes, P.I., Li, J., Duan, Z., Yang, X., Cai, Y., Huang, Q., Lu, Y.: ZnO surface acoustic wave sensors built on zein-coated flexible food packages. Sensor Lett. 11(3), 539–544 (2013)

    Article  Google Scholar 

  123. Esen, A.: A proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays L). J. Cereal Sci. 5(2), 117–128 (1987)

    Article  Google Scholar 

  124. Esen, A.: An immunodominant site of γ-zein1 is in the region of tandem hexapeptide repeats. J. Protein Chem. 9(4), 453–460 (1990)

    Article  Google Scholar 

  125. Argos, P., Pedersen, K., Marks, M., Larkins, B.: A structural model for maize zein proteins. J. Biol. Chem. 257(17), 9984–9990 (1982)

    Google Scholar 

  126. Mannheim, A., Cheryan, M.: Water-soluble zein by enzymatic modification in organic solvents. Cereal Chem. 70, 115 (1993)

    Google Scholar 

  127. Danzer, L.A., Ades, H., Rees, E.D.: The helical content of zein, a water insoluble protein, in non-aqueous solvents. BBA-Protein Struct. M 386(1), 26–31 (1975)

    Article  Google Scholar 

  128. Watson, S., Yahal, K.: Comparison of the wet-milling properties of opaueu-2 high-lysine corn and normal corn. Corn Products Co. pp. 488–498 (1967)

  129. Singh, N., Cheryan, M.: Extraction of oil from corn distillers dried grains with solubles. T. ASAE 41(6), 1775–1778 (1998)

    Article  Google Scholar 

  130. Luo, Y., Wang, Q.: Zein-based micro-and nano-particles for drug and nutrient delivery: A review. J. Appl. Polym. Sci. 131(16), 40696 (2014)

  131. Huang, G., Yang, X.: Studies on zein as delayed-release skeleton material of aspirin. Chem. Bioeng. 9, 48–50 (2005)

    Google Scholar 

  132. Hurtado-Lopez, P., Murdan, S.: Formulation and characterisation of zein microspheres as delivery vehicles. J. Drug Deliv. Sci. Technol. 15(4), 267–272 (2005)

    Article  Google Scholar 

  133. Zhong, Q., Jin, M.: Nanoscalar structures of spray-dried zein microcapsules and in vitro release kinetics of the encapsulated lysozyme as affected by formulations. J. Agric. Food Chem. 57(9), 3886–3894 (2009)

    Article  Google Scholar 

  134. Mukhidinov, Z.K., Kasimova, G.F., Bobokalonov, D.T., Khalikov, D.K., Teshaev, K.I., Khalikova, M.D., Liu, L.S.: Pectin-zein microspheres as drug delivery systems. Pharm. Chem. J. 44(10), 564–567 (2011)

    Article  Google Scholar 

  135. Yan, F.: Delivery of a probiotic-derived protein by pectin/zein hydrogels for colitis prevention and treatment. Abstr. Pap. Am. Chem. S. 244 (2012)

  136. O’brien, R.D.: Fats and oils: formulating and processing for applications. CRC Press, Boca Raton (2010)

    Google Scholar 

  137. Quispe-Condori, S., Saldana, M.D.A., Temelli, F.: Microencapsulation of flax oil with zein using spray and freeze drying. Lwt-Food Sci. Technol. 44(9), 1880–1887 (2011)

    Article  Google Scholar 

  138. Wu, S., Myers, D.J., Johnson, L.A.: Factors affecting yield and composition of zein extracted from commercial corn gluten meal 1. Cereal Chem. 74(3), 258–263 (1997)

    Article  Google Scholar 

  139. Anderson, T.J., Lamsal, B.P.: Zein extraction from corn, corn products, and coproducts and modifications for various applications: a review. Cereal Chem. 88(2), 159–173 (2011)

    Article  Google Scholar 

  140. Roy, C., Roy, R.D.: Low temperature solvent extraction process for producing high purity zein. U.S Patent 3535305, Oct 20, 1970 (1970)

  141. Wolf, W.J., Lawton, J.W.: Isolation and characterization of zein from corn distillers’ grains and related fractions. Cereal Chem. 74(5), 530–536 (1997)

    Article  Google Scholar 

  142. Xu, W., Reddy, N., Yang, Y.: An acidic method of zein extraction from DDGS. J. Agric. Food Chem. 55(15), 6279–6284 (2007)

    Article  Google Scholar 

  143. Wang, Q., Yin, L., Padua, G.W.: Effect of hydrophilic and lipophilic compounds on zein microstructures. Food Biophys. 3(2), 174–181 (2008)

    Article  Google Scholar 

  144. Wang, Y., Padua, G.W.: Formation of zein microphases in ethanol-water. Langmuir 26(15), 12897–12901 (2010)

    Article  Google Scholar 

  145. Wang, Y., Padua, G.W.: Formation of zein spheres by evaporation-induced self-assembly. Colloid Polym. Sci. 290(15), 1593–1598 (2012)

    Article  Google Scholar 

  146. Fu, J.-X., Wang, H.-J., Zhou, Y.-Q., Wang, J.-Y.: Antibacterial activity of ciprofloxacin-loaded zein microsphere films. Mat. Sci. Eng. C-Bio. S. 29(4), 1161–1166 (2009)

    Article  Google Scholar 

  147. Seville, P.C., Kellaway, I.W., Birchall, J.C.: Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray-drying. J. Gene. Med. 4(4), 428–437 (2002)

    Article  Google Scholar 

  148. Desobry, S.A., Netto, F.M., Labuza, T.P.: Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J. Food Sci. 62(6), 1158–1162 (1997)

    Article  Google Scholar 

  149. Liu, L., Fishman, M.L., Hicks, K.B.: Pectin in controlled drug delivery—a review. Cellulose 14(1), 15–24 (2007)

    Article  Google Scholar 

  150. Liu, L., Fishman, M.L., Hicks, K.B., Kende, M., Ruthel, G.: Pectin/zein beads for potential colon-specific drug delivery: synthesis and in vitro evaluation. Drug Deliv. 13(6), 417–423 (2006)

    Article  Google Scholar 

  151. Chen, L., Subirade, M.: Elaboration and characterization of soy/zein protein microspheres for controlled nutraceutical delivery. Biomacromolecules 10(12), 3327–3334 (2009)

    Article  Google Scholar 

  152. Moros, E., Darnoko, D., Cheryan, M., Perkins, E., Jerrell, J.: Analysis of xanthophylls in corn by HPLC. J. Agric. Food Chem. 50(21), 5787–5790 (2002)

    Article  Google Scholar 

  153. Paliwal, R., Palakurthi, S.: Zein in controlled drug delivery and tissue engineering. J. Control Release 189, 108–122 (2014)

    Article  Google Scholar 

  154. Perkins, E.G.: Composition of soybeans and soybean products. Practical handbook of soybean processing and utilization. AOCS Press, Urbana (1995)

    Google Scholar 

  155. Su, J.-F., Yuan, X.-Y., Huang, Z., Wang, X.-Y., Lu, X.-Z., Zhang, L.-D., Wang, S.-B.: Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: Color, transparency and heat-sealing ability. Mater. Sci. Eng. C Mater. Biol. Appl. 32(1), 40–46 (2012)

  156. Caillard, R., Remondetto, G., Mateescu, M., Subirade, M.: Characterization of amino cross-linked soy protein hydrogels. J. Food Sci. 73(5), 283–291 (2008)

    Article  Google Scholar 

  157. Kinsella, J.E.: Functional properties of soy proteins. J. Am. Oil Chem. Soc. 56(3), 242–258 (1979)

    Article  Google Scholar 

  158. Maruyama, N., Adachi, M., Takahashi, K., Yagasaki, K., Kohno, M., Takenaka, Y., Okuda, E., Nakagawa, S., Mikami, B., Utsumi, S.: Crystal structures of recombinant and native soybean β-conglycinin β homotrimers. Eur. J. Biochem. 268(12), 3595–3604 (2001)

    Article  Google Scholar 

  159. Maruyama, N., Salleh, M.R.M., Takahashi, K., Yagasaki, K., Goto, H., Hontani, N., Nakagawa, S., Utsumi, S.: The effect of the N-linked glycans on structural features and physicochemical functions of soybean β-conglycinin homotrimers. J. Am. Oil Chem. Soc. 79(2), 139–144 (2002)

    Article  Google Scholar 

  160. Kang, H.G., Lee, S.B., Lee, Y.M.: Novel preparative method for porous hydrogels using overrun process. Polym. Int. 54(3), 537–543 (2005)

    Article  Google Scholar 

  161. Caillard, R., Remondetto, G., Subirade, M.: Physicochemical properties and microstructure of soy protein hydrogels co-induced by Maillard type cross-linking and salts. Food Res. Int. 42(1), 98–106 (2009)

    Article  Google Scholar 

  162. Meikle, S.T., Standen, G., Salvage, J., De Santis, R., Nicolais, L., Ambrosio, L., Santin, M.: Synthesis and characterization of soybean-based hydrogels with an intrinsic activity on cell differentiation. Tissue Eng. pt. A 18(17–18), 1932–1939 (2012)

    Article  Google Scholar 

  163. Santin, M., Ambrosio, L.: Soybean-based biomaterials: preparation, properties and tissue regeneration potential. Expert Rev. Med. Devices 5(3), 349–358 (2008)

    Article  Google Scholar 

  164. Zohuriaan-Mehr, M.J., Pourjavadi, A., Salimi, H., Kurdtabar, M.: Protein- and homo poly(amino acid)-based hydrogels with super-swelling properties. Polym. Adv. Technol. 20(8), 655–671 (2009)

    Article  Google Scholar 

  165. Utsumi, S., Kinsella, J.E.: Forces involved in soy protein gelation: effects of various reagents on the formation, hardness and solubility of heat-induced gels made from 7S, 11S, and soy isolate. J. Food Sci. 50(5), 1278–1282 (1985)

    Article  Google Scholar 

  166. Puppo, M.C., Añón, M.C.: Structural properties of heat-induced soy protein gels as affected by ionic strength and pH. J. Agric. Food Chem. 46(9), 3583–3589 (1998)

    Article  Google Scholar 

  167. Li, Y.-D., Zeng, J.-B., Wang, X.-L., Yang, K.-K., Wang, Y.-Z.: Structure and properties of soy protein/poly (butylene succinate) blends with improved compatibility. Biomacromolecules 9(11), 3157–3164 (2008)

    Article  Google Scholar 

  168. Rhim, J.-W., Gennadios, A., Weller, C.L., Cezeirat, C., Hanna, M.A.: Soy protein isolate–dialdehyde starch films. Ind. Crop. Prod. 8(3), 195–203 (1998)

    Article  Google Scholar 

  169. Sacks, F.M., Lichtenstein, A., Van Horn, L., Harris, W., Kris-Etherton, P., Winston, M.: Soy protein, isoflavones, and cardiovascular health an American Heart Association science advisory for professionals from the nutrition committee. Circulation 113(7), 1034–1044 (2006)

    Article  Google Scholar 

  170. Cassidy, A., Bingham, S., Setchell, K.: Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am. J. Clin. Nutr. 60(3), 333–340 (1994)

    Google Scholar 

  171. Lee, J.-S.: Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci. 79(16), 1578–1584 (2006)

    Article  Google Scholar 

  172. Lai, Y.P., Mondor, M., Moresoli, C., Drolet, H., Gros-Louis, M., Ippersiel, D., Lamarche, F., Arcand, Y.: Production of soy protein isolates with low phytic acid content by membrane technologies: impact of the extraction and ultrafiltration/diafiltration conditions. J. Food Eng. 114(2), 221–227 (2013)

    Article  Google Scholar 

  173. Deak, N.A., Johnson, L.A.: Effects of extraction temperature and preservation method on functionality of soy protein. J. Am. Oil Chem. Soc. 84(3), 259–268 (2007)

    Article  Google Scholar 

  174. Tang, C.H., Wu, H., Yu, H.P., Li, L., Chen, Z., Yang, X.Q.: Coagulation and gelation of soy protein isolates induced by microbial transglutaminase. J. Food Biochem. 30(1), 35–55 (2006)

    Article  Google Scholar 

  175. Alting, A.C., de Jongh, H.H., Visschers, R.W., Simons, J.-W.F.: Physical and chemical interactions in cold gelation of food proteins. J. Agric. Food Chem. 50(16), 4682–4689 (2002)

    Article  Google Scholar 

  176. Maltais, A., Remondetto, G.E., Gonzalez, R., Subirade, M.: Formation of soy protein isolate cold-set gels: protein and salt effects. J. Food Sci. 70(1), C67–C73 (2005)

    Article  Google Scholar 

  177. Hwang, D.C., Damodaran, S.: Metal-chelating properties and biodegradability of an ethylenediaminetetraacetic acid dianhydride modified soy protein hydrogel. J. Appl. Polym. Sci. 64(5), 891–901 (1997)

    Article  Google Scholar 

  178. Brännvall, K., Bergman, K., Wallenquist, U., Svahn, S., Bowden, T., Hilborn, J., Forsberg-Nilsson, K.: Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J. Neurosci. Res. 85(10), 2138–2146 (2007)

    Article  Google Scholar 

  179. Hwang, D.C., Damodaran, S.: Metal-chelating properties and biodegradability of an ethylenediaminetetraacetic acid dianhydride modified soy protein hydrogel. J. Appl. Polym. Sci. 64(5), 891–901 (1997)

    Article  Google Scholar 

  180. Damodaran, S., Hwang, D.C.: Carboxyl-modified superabsorbent protein hydrogel. U.S. Patent 5847089, Dec 8, 1998

  181. Guo, J., Jin, Y.-C., Yang, X.-Q., Yu, S.-J., Yin, S.-W., Qi, J.-R.: Computed microtomography and mechanical property analysis of soy protein porous hydrogel prepared by homogenizing and microbial transglutaminase cross-linking. Food Hydrocolloid. 31(2), 220–226 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding provided by the Fonds de Recherche du Québec—Nature et Technologies (FRQNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Josée Dumont.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, N., Dumont, MJ. Protein-Based Hydrogels Derived from Industrial Byproducts Containing Collagen, Keratin, Zein and Soy. Waste Biomass Valor 8, 285–300 (2017). https://doi.org/10.1007/s12649-016-9684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9684-0

Keywords

Navigation