Skip to main content
Log in

Composting of Biosolids Enhanced by a Combined Pretreatment with Hydrogen Peroxide and Triton X-100

  • Original paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this report, effects of oxidative pretreatment on the composting of biosolids were demonstrated. Pretreatment with 0.18 % hydrogen peroxide (H2O2) in combination with 0.1 % Triton X-100 enhanced biodegradation of biosolid composting mixtures, including that of food factory waste-activated sludge (FFWAS), rice husk and mature compost in a ratio of 75:15:10 and paper mill-cellulosic sediment sludge (PMCSS), pig manure and mature compost in a ratio of 45:45:10. The composting process was monitored on the changes of several parameters, including temperature, carbon dioxide evolution, pH, organic matter content (volatile solids, VS), carbon/nitrogen ratio and microbe populations. Organic matters in FFWAS and PMCSS composting mixtures decreased at a rate of 0.42 and 0.33 % VS reduction day−1, respectively. Both FFWAS and PMCSS composts were adequate for plant growth as shown by a maturity assay on day 20. Furthermore, initiation effect of H2O2 on the composting of biosolids was examined on FFWAS-rice husk mixture. The outcome indicated that biodegradability of organic matter increased by the combined pretreatment with Triton X-100 was affected by total amount of H2O2 applied with an optimum concentration as low as 0.18 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lu, Q., He, Z.L., Stoffella, P.J.: Land application of biosolids in the USA: a review. Appl. Environ. Soil Sci. 201462 (2012)

  2. Godfree, A., Farrell, J.: Processes for managing pathogens. J. Environ. Qual. 34, 105–113 (2005)

  3. Guzmán, C., Jofre, J., Montemayor, M., Lucena, F.: Occurrence and levels of indicators and selected pathogens in different sludges and biosolids. J. Appl. Microbiol. 103, 2420–2429 (2007)

    Article  Google Scholar 

  4. Englande Jr, A.J., Reimers, R.S.: Biosolids management—sustainable development status. Water Sci. Technol. 44(10), 41–46 (2001)

    Google Scholar 

  5. Wang, H., Brown, S.L., Magesan, G.N., Slade, A.H., Quintern, M., Clinton, P.W., Payn, T.W.: Technology options for the management of biosolids. Environ. Sci. Pollut. Res. Int. 15, 308–317 (2008)

    Article  Google Scholar 

  6. Diaz, L.F., de Bertoldi, M., Bidlingmaier, W. (eds.): Compost science and technology. Elsevier, Boston, MA (2007)

    Google Scholar 

  7. Vallini, G., Di Gregorio, S., Pera, A., Cunha Queda, A.C.F.: Exploitation of composting management for either reclamation of organic wastes or solid-phase treatment of contaminated environmental matrices. Environ. Rev. 10, 195–207 (2002)

    Article  Google Scholar 

  8. Bolto, B., Gregory, J.: Organic polyelectrolytes in water treatment. Water Res. 41, 2301–2324 (2007)

    Article  Google Scholar 

  9. Bougrier, C., Albasi, C., Delgenès, J.P., Carrère, H.: Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem. Eng. Process. 45(8), 711–718 (2006)

  10. Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F.: The effects of substrate pretreatment on anaerobic digestion systems: a review. Waste Manag. 32, 1634–1650 (2012)

    Article  Google Scholar 

  11. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)

  12. Stuckey, D.C., McCarty, P.L.: The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge. Water Res. 18(11), 1343–1353 (1984)

    Article  Google Scholar 

  13. Kobayashi, T., Li, Y.Y., Harada, H., Yasui, H., Noike, T.: Upgrading of the anaerobic digestion of waste activated sludge by combining temperature-phased anaerobic digestion and intermediate ozonation. Water Sci. Technol. 59(1), 185–193 (2009)

    Article  Google Scholar 

  14. Shahriari, H., Warith, M., Hamoda, M., Kennedy, K.J.: Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag. 32, 41–52 (2012)

  15. Berto, J., Rochenbach, G.C., Barreiros, M.A.B., Corrêa, A.X.R., Peluso-Silva, S., Radetski, C.M.: Physico-chemical, microbiological and ecotoxicological evaluation of a septic tank/Fenton reaction combination for the treatment of hospital wastewaters. Ecotoxicol. Environ. Saf. 72, 1076–1081 (2009)

    Article  Google Scholar 

  16. De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L.F., Pulgarín, C.: Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Res. 46, 1947–1957 (2012)

    Article  Google Scholar 

  17. Jamil, T.S., Ghaly, M.Y., El-Seesy, I.E., Souaya, E.R., Nasr, R.A.: A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater. J. Hazard. Mater. 185, 353–358 (2011)

    Article  Google Scholar 

  18. Kallel, M., Belaid, C., Boussahel, R., Ksibi, M., Montiel, A., Elleuch, B.: Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide. J. Hazard. Mater. 163, 550–554 (2009)

    Article  Google Scholar 

  19. Goes, A.P., Sheppard, J.D.: Effect of surfactants on a-amylase production in a solid substrate fermentation process. J. Chem. Technol. Biotechnol. 74, 709–712 (1999)

    Article  Google Scholar 

  20. Mandviwala, T.N., Khire, J.M.: Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. J. Ind. Microbiol. Biotechnol. 24, 237–243 (2000)

    Article  Google Scholar 

  21. Tiquia, S.M., Tam, N.F.: Composting of spent pig litter in turned and forced-aerated piles. Environ. Pollut. 99, 329–337 (1998)

    Article  Google Scholar 

  22. Sundberg, C., Jönsson, H.: Higher pH and faster decomposition in biowaste composting by increased aeration. Waste Manag. 28, 518–526 (2008)

  23. Bremner, J.M.: Nitrogen—total. In: Sparks, D.L. (ed.) Methods of soil analysis. Part 3—chemical methods. SSSA, Madison, Wisconsin, USA (1996)

    Google Scholar 

  24. Charles, M.J., Simmons, M.S.: Methods for the determination of carbon in soils and sediments: a review. Analyst 111, 385–390 (1986)

    Article  Google Scholar 

  25. Hernández, T., Masciandaro, G., Moreno, J.I., García, C.: Changes in organic matter composition during composting of two digested sewage sludges. Waste Manag. 26, 1370–1376 (2006)

    Article  Google Scholar 

  26. Chang, H.D., Chen, C.Y.: Application of PVA-derived porous media to accelerate biodegradation (composting) of organic solid substrates. Biotechnol. Lett. 34, 635–640 (2011)

    Article  Google Scholar 

  27. Tendler, M.D., Burkholder, P.R.: Studies on the thermophilic actinomycetes I. Methods of cultivation. Appl. Environ. Microbiol. 9, 394–399 (1961)

    Google Scholar 

  28. Singh, R., Kim, J., Shepherd Jr, M.W., Luo, F., Jiang, X.: Determining thermal inactivation of Escherichia coli O157:H7 in fresh compost by simulating early phases of the composting process. Appl. Environ. Microbiol. 77, 4126–4135 (2011)

    Article  Google Scholar 

  29. Liang, C., Das, K.C., McClendon, R.W.: The influence of temperature and moisture contents regimes on the aerobic microbial activity of a bio-solids composting blend. Bioresour. Technol. 86, 131–137 (2003)

    Article  Google Scholar 

  30. Montero, B., Garcia-Morales, J.L., Sales, D., Solera, R.: Evolution of microorganisms in thermophilic-dry anaerobic digestion. Bioresour. Technol. 99, 3233–3243 (2008)

    Article  Google Scholar 

  31. Balis, C., Tassiopoulou, V.: Triggering effect of hydrogen peroxide on composting and a new method for assessing stability of composts in a thermally insulated microcosm system. Acta Hortic. 549, 61–70 (2001)

    Google Scholar 

  32. Shi, J.G., Zeng, G.M., Yuan, X.Z., Dai, F., Liu, J., Wu, X.H.: The stimulatory effects of surfactants on composting of waste rich in cellulose. World J. Microbiol. Biotechnol. 22, 1121–1127 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Ming-Chi University of Technology, Industrial Technology Research Institute and Ministry of Economic Affairs, Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiao-Dao Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, HD., Chen, CY. Composting of Biosolids Enhanced by a Combined Pretreatment with Hydrogen Peroxide and Triton X-100. Waste Biomass Valor 6, 45–51 (2015). https://doi.org/10.1007/s12649-014-9319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9319-2

Keywords

Navigation