Skip to main content

Advertisement

Log in

Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials

  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Portland cement production has been identified as a primary contributor to the world’s Greenhouse gas emissions, calculated at around 5–8% of all manmade emissions worldwide. The majority of these emissions are inherent to the chemistry of cement and the high-temperature processing required for its synthesis, and so can only be avoided by radical changes in construction materials chemistry and synthesis pathways. Inorganic polymer (including “geopolymer”) binders provide an alternative to traditional cements with approximately 80% less CO2 emissions, and are derived from industrial waste materials such as fly ash and metallurgical slags, which additionally provide a means of valorizing these wastes. This paper reviews the technical and commercial factors driving the growing commercial adoption of geopolymer technology, and explains that an understanding of the chemistry and mechanisms of geopolymer synthesis is pivotal for the optimal mix design of “green” concretes in industry. Demand pull by a carbon conscious market at a time of growing public awareness of climate change continues to be the key driver for the short term adoption of geopolymer concrete. A detailed chemical understanding of the properties of geopolymers, such as setting time, workability and durability, plays an enabling role in the commercialization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ACI Committee 226: Ground granulated blast-furnace slag as a cementitious constituent in concrete. ACI Mater. J. 84(4), 327–342 (1987)

    Google Scholar 

  2. Aïtcin, P.-C.: Cements of yesterday and today; Concrete of tomorrow. Cem. Concr. Res. 30, 1349–1359 (2000)

    Article  Google Scholar 

  3. Alexander, M.J.: Durability indexes and their use in concrete engineering. In: International RILEM Symposium on Concrete Science and Engineering: A Tribute to Arnon Bentur, pp. 9–22, RILEM Publications, Evanston, IL (2004)

  4. Allen, A.J., Thomas, J.J., Jennings, H.M.: Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat. Mater. 6, 311–316 (2007)

    Article  Google Scholar 

  5. Álvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., Font, O., Moreno, T., Diez, S., Vázquez, E., Barra, M.: Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. J. Hazard. Mater. 154(1–3), 175–183 (2008)

    Article  Google Scholar 

  6. Bankowski, P., Zou, L., Hodges, R.: Using inorganic polymer to reduce leach rates of metals from brown coal fly ash. Miner. Eng. 17(2), 159–166 (2004)

    Article  Google Scholar 

  7. Bastidas, D., Fernández-Jiménez, A., Palomo, A., González, J.A.: A study on the passive state stability of steel embedded in activated fly ash mortars. Corros. Sci. 50(4), 1058–1065 (2008)

    Article  Google Scholar 

  8. Bernal, S.A.: Carbonatación de Concretos Producidos en Sistemas Binarios de una Escoria Siderúrgica y un Metacaolín Activados Alcalinamente. Ph.D. thesis, Universidad del Valle, Cali, Colombia (2009)

  9. Bouzoubaâ, N., Zhang, M.H., Malhotra, V.M., Golden, D.M.: Blended fly ash cements—a review. ACI Mater. J. 96(6), 641–650 (1999)

    Google Scholar 

  10. Buchwald, A., Kaps, C., Hohmann, M.: Alkali-activated binders and pozzolan cement binders—complete binder reaction or two sides of the same story? In: Proceedings of the 11th International Conference on the Chemistry of Cement, pp. 1238–1246. Durban, South Africa (2003)

  11. Buchwald, A., Dombrowski, K., Weil, M.: Evaluation of primary and secondary materials under technical, ecological and economic aspects for the use as raw materials in geopolymeric binders. In: 2nd International Symposium on Non-Traditional Cement and Concrete, pp. 32–40. Brno. Prague, Czech Republic (2005)

  12. Criado, M., Palomo, A., Fernández-Jiménez, A.: Alkali activation of fly ashes. Part 1: effect of curing conditions on the carbonation of the reaction products. Fuel 84(16), 2048–2054 (2005)

    Article  Google Scholar 

  13. Damtoft, J.S., Lukasik, J., Herfort, D., Sorrentino, D., Gartner, E.: Sustainable development and climate change initiatives. Cem. Concr. Res. 38(2), 115–127 (2008)

    Article  Google Scholar 

  14. Davidovits, J.: Geopolymers—inorganic polymeric new materials. J. Therm. Anal. 37(8), 1633–1656 (1991)

    Article  Google Scholar 

  15. Davidovits, J.: Geopolymer Chemistry and Applications. Institut Géopolymère, Saint-Quentin, France (2008)

    Google Scholar 

  16. Davidovits, J.: The need to create a new technical language for the transfer of basic scientific information. In: Gibb, J.M., Nicolay, D. (eds.) Transfer and Exploitation of Scientific and Technical Information, EUR 7716, pp. 316–320. Commission of the European Communities, Luxembourg (1982)

  17. Deja, J.: Carbonation aspects of alkali activated slag mortars and concretes. Silicon Ind. 67(1), 37–42 (2002)

    Google Scholar 

  18. Diamond, S.: Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 30, 1517–1525 (2000)

    Article  Google Scholar 

  19. Douglas, E., Bilodeau, A., Malhotra, V.M.: Properties and durability of alkali-activated slag concrete. ACI Mater. J. 89(5), 509–516 (1992)

    Google Scholar 

  20. Duxson, P., Provis, J.L.: Low CO2 concrete: are we making any progress? BEDP Environment Design Guide, Paper PRO24. Australian Institute of Architects, Melbourne, Australia (2009)

  21. Duxson, P., Provis, J.L., Lukey, G.C., Separovic, F., van Deventer, J.S.J.: 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir 21(7), 3028–3036 (2005)

    Article  Google Scholar 

  22. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007)

    Article  Google Scholar 

  23. Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: The role of inorganic polymer technology in the development of ‘Green concrete’. Cem. Concr. Res. 37(12), 1590–1597 (2007)

    Article  Google Scholar 

  24. Freedonia Group: World Cement to 2012. http://www.freedoniagroup.com/World-Cement.html (2009)

  25. Garboczi, E.J., Bentz, D.P.: The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model. Cem. Concr. Res. 31(10), 1501–1514 (2001)

    Article  Google Scholar 

  26. Gartner, E.: Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 34(9), 1489–1498 (2004)

    Article  Google Scholar 

  27. Glasser, F.P., Zhang, L.: High-performance cement matrices based on calcium sulfoaluminate-belite compositions. Cem. Concr. Res. 31(12), 1881–1886 (2001)

    Article  Google Scholar 

  28. Glasser, F.P., Marchand, J., Samson, E.: Durability of concrete—degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 38(2), 226–246 (2008)

    Article  Google Scholar 

  29. Glukhovsky, V.D.: Ancient, modern and future concretes. In: Proceedings of the First International Conference on Alkaline Cements and Concretes, pp. 1–9, VIPOL Stock Company, Kiev, Ukraine (1994)

  30. Gmira, A., Zabat, M., Pellenq, R., Van Damme, H.: Microscopic physical basis of the poromechanical behavior of cement-based materials. Mater. Struct. 37(1), 3–14 (2004)

    Article  Google Scholar 

  31. Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Elsevier, Oxford, UK (1998)

    Google Scholar 

  32. Hooton, R.D.: Bridging the gap between research and standards. Cem. Concr. Res. 38(2), 247–258 (2008)

    Article  Google Scholar 

  33. Hooton, R.D., Brown, P.W.: Development of test methods to address the various mechanisms of sulfate attack. In: RILEM TC 211-PAE Final Conference, Concrete in Aggressive Aqueous Environments, pp. 280–297, RILEM, Toulouse, France (2009)

  34. Husbands, T.B., Malone, P.G., Wakeley, L.D.: Performance of Concretes Proportioned with Pyrament Blended Cement. U.S. Army Corps of Engineers Construction Productivity Advancement Research Program, Report CPAR-SL-94-2, Vicksburg, MS, 106 pp, 1994

  35. Izquierdo, M., Querol, X., Davidovits, J., Antenucci, D., Nugteren, H., Fernández-Pereira, C.: Coal fly ash-slag-based geopolymers: microstructure and metal leaching. J. Hazard. Mater. 166(1), 561–566 (2009)

    Article  Google Scholar 

  36. Jolicoeur, C., Simard, M.-A.: Chemical admixture-cement interactions: phenomenology and physico-chemical concepts. Cem. Concr. Compos. 20(2–3), 87–101 (1998)

    Article  Google Scholar 

  37. Jönsson, B., Wennerström, H., Nonat, A., Cabane, B.: Onset of cohesion in cement paste. Langmuir 20(16), 6702–6709 (2004)

    Article  Google Scholar 

  38. Juenger, M.C.G., Jennings, H.M.: The use of nitrogen adsorption to assess the microstructure of cement paste. Cem. Concr. Res. 31(6), 883–892 (2001)

    Article  Google Scholar 

  39. Kalinichev, A.G., Wang, J., Kirkpatrick, R.J.: Molecular dynamics modeling of the structure, dynamics and energetics of mineral-water interfaces: application to cement materials. Cem. Concr. Res. 37(3), 337–347 (2007)

    Article  Google Scholar 

  40. Krivenko, P.V.: Alkali-activated aluminosilicates: past, present and future. Chem. Listy 102, s273–s277 (2008)

    Google Scholar 

  41. Krivenko, P.V.: Alkaline cements. In: Proceedings of the First International Conference on Alkaline Cements and Concretes, pp. 11–129, VIPOL Stock Company, Kiev, Ukraine (1994)

  42. Lloyd, R.R.: The durability of inorganic polymer cements. Ph.D. thesis, University of Melbourne, Australia (2008)

  43. Lloyd, R.R., Provis, J.L., Smeaton, K.J., van Deventer, J.S.J.: Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion. Micropor. Mesopor. Mater. 126(1–2), 32–39 (2009)

    Article  Google Scholar 

  44. Lloyd, R.R., Provis, J.L., van Deventer, J.S.J.: Pore solution composition and alkali diffusion in inorganic polymer cement. Cem. Concr. Res., submitted (2010)

  45. Magrath, A.J.: Ten timeless truths about pricing. J. Bus. Ind. Market. 6(3–4), 15–23 (1991)

    Article  Google Scholar 

  46. Malone, P.G., Randall, C.J., Kirkpatrick, T.: Potential Applications of Alkali-Activated Aluminosilicate Binders in Military Operations, p. 44. Geotechnical Laboratory, Department of the Army, Washington, DC (1985)

    Google Scholar 

  47. Mehta, P.K., Monteiro, P.J.M.: Concrete: Microstructure, Properties and Materials, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  48. Miranda, J.M., Fernández-Jiménez, A., González, J.A., Palomo, A.: Corrosion resistance in activated fly ash mortars. Cem. Concr. Res. 35(6), 1210–1217 (2005)

    Article  Google Scholar 

  49. Provis, J.L.: Activating solution chemistry for geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structures, Processing, Properties and Industrial Applications, pp. 50–71. Woodhead, Cambridge, UK (2009)

    Google Scholar 

  50. Provis, J.L.: Immobilization of toxic waste in geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structures, Processing, Properties and Industrial Applications, pp. 423–442. Woodhead, Cambridge, UK (2009)

    Google Scholar 

  51. Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: Do geopolymers actually contain nanocrystalline zeolites?—a reexamination of existing results. Chem. Mater. 17(12), 3075–3085 (2005)

    Article  Google Scholar 

  52. Provis, J.L., Duxson, P., van Deventer, J.S.J.: The role of particle technology in developing sustainable construction materials. Adv. Powder Technol. 21(1), 2–7 (2010)

    Google Scholar 

  53. Provis, J.L., Rose, V., Bernal, S.A., van Deventer, J.S.J.: High resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali activated fly ash. Langmuir 25(19), 11897–11904 (2009)

    Article  Google Scholar 

  54. Rahier, H., Simons, W., van Mele, B., Biesemans, M.: Low-temperature synthesized aluminosilicate glasses. 3. Influence of the composition of the silicate solution on production, structure and properties. J. Mater. Sci. 32(9), 2237–2247 (1997)

    Article  Google Scholar 

  55. Richardson, I.G.: The nature of C–S–H in hardened cements. Cem. Concr. Res. 29, 1131–1147 (1999)

    Article  Google Scholar 

  56. Rostami, H., Brendley, W.: Alkali ash material: a novel fly ash-based cement. Environ. Sci. Technol. 37(15), 3454–3457 (2003)

    Article  Google Scholar 

  57. Rostovskaya, G., Ilyin, V., Blazhis, A.: The service properties of the slag alkaline concretes. Alkali Activated Materials—Research, Production and Utilization, pp. 593–610, Česká Rozvojová Agentura, Prague, Czech Republic (2007)

  58. Roy, D.M., Jiang, W., Silsbee, M.R.: Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem. Concr. Res. 30, 1879–1884 (2000)

    Article  Google Scholar 

  59. Scrivener, K.L., Kirkpatrick, R.J.: Innovation in use and research on cementitious material. Cem. Concr. Res. 38(2), 128–136 (2008)

    Article  Google Scholar 

  60. Sharp, J.H., Lawrence, C.D., Yang, R.: Calcium sulfoaluminate cements—low-energy cements, special cements or what? Adv. Cem. Res. 11(1), 3–13 (1999)

    Google Scholar 

  61. Shi, C., Krivenko, P.V., Roy, D.M.: Alkali-Activated Cements and Concretes. Taylor & Francis, Abingdon, UK (2006)

    Book  Google Scholar 

  62. Song, X.-J., Marosszeky, M., Brungs, M., Chang, Z.-T.: Study of alkali metal activators on sulphuric acid resistance of geopolymer concrete. In: International Conference on Pozzolan, Concrete and Geopolymer, pp. 158–166, Khon Kaen, Thailand (2006)

  63. Talling, B., Krivenko, P.V.: Blast furnace slag—the ultimate binder. In: Chandra, S. (ed.) Waste Materials Used in Concrete Manufacturing, pp. 235–289. Noyes Publications, Park Ridge, NJ (1997)

    Google Scholar 

  64. Taylor, M., Tam, C., Gielen, D.: Energy Efficiency and CO2 Emissions from the Global Cement Industry. International Energy Agency, Paris (2006)

  65. van Deventer, J.S.J., Provis, J.L., Duxson, P., Lukey, G.C.: Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. A139(3), 506–513 (2007)

    Article  Google Scholar 

  66. Wagh, A.S.: Chemically Bonded Phosphate Ceramics. Elsevier, Oxford, UK (2004)

    Google Scholar 

  67. Wagh, A.S.: Chemically bonded phosphate ceramics—a novel class of geopolymers. Ceram. Trans. 165, 107–118 (2005)

    Google Scholar 

  68. Weil, M., Jeske, U., Dombrowski, K., Buchwald, A.: Sustainable design of geopolymers—evaluation of raw materials by the integration of economic and environmental aspects in the early phases of material development. Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses, pp. 279–283. Springer, Tokyo, Japan (2007)

  69. Weil, M., Dombrowski, K., Buchwald, A.: Life-cycle analysis of geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structures, Processing, Properties and Industrial Applications, pp. 194–212. Woodhead, Cambridge, UK (2009)

    Google Scholar 

  70. Wheat, H.G.: Corrosion behavior of steel in concrete made with Pyrament® blended cement. Cem. Concr. Res. 22, 103–111 (1992)

    Article  Google Scholar 

  71. Winburn, R.S., Lerach, S.L., McCarthy, G.J., Grier, D.G., Cathcart, J.D.: Quantification of ferrite spinel and hematite in fly ash magnetically separated fractions. Adv. X-ray Anal. 43, 350–355 (2000)

    Google Scholar 

  72. Xu, H., Provis, J.L., van Deventer, J.S.J., Krivenko, P.V.: Characterization of aged slag concretes. ACI Mater. J. 105(2), 131–139 (2008)

    Google Scholar 

  73. Yip, C.K., Lukey, G.C., Provis, J.L., van Deventer, J.S.J.: Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38(4), 554–564 (2008)

    Article  Google Scholar 

  74. Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J. Hazard. Mater. 157(2–3), 587–598 (2008)

    Article  Google Scholar 

  75. Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers. Cem. Concr. Res. 38(5), 681–688 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by Zeobond Pty Ltd and the Australian Research Council (ARC) through an ARC Linkage Project grant awarded jointly to JP and PD, and also through the Particulate Fluids Processing Centre, a Special Research Centre of the Australian Research Council. Authors JvD, PD and DB hold financial interest in Zeobond Pty. Ltd., a producer of AAM cements and concretes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Deventer, J.S.J., Provis, J.L., Duxson, P. et al. Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials. Waste Biomass Valor 1, 145–155 (2010). https://doi.org/10.1007/s12649-010-9015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9015-9

Keywords

Navigation