Skip to main content
Log in

Influence of composition variation on structural, magnetic and dielectric properties of Gd3Fe5O12(x)/MgFe2O4(1−x) composite

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Sol–gel auto-combustion method was used to prepare Gd3Fe5O12 and MgFe2O4. Mechanical blending was used to form the composites of Gd3Fe5O12 (x)−MgFe2O(1−x) (x = 1.0, 0.5, 0.75 in wt.%). X-ray diffraction (XRD) study reveals the pure phase formation of Gd3Fe5O12 and MgFe2O4 and the presence of both phases in composites. The average crystallite size lies in the range of 26–56 nm. Field emission scanning electron microscope (FESEM) study reveals that the grains of Gd3Fe5O12 have a spherical morphology and its composites show agglomeration due to presence of magnetic interaction between ferrites nanoparticles. The dielectric study reveals that the real and imaginary parts of complex permittivity of the composites vary with the change in the composition of Gd3Fe5O12 and MgFe2O4. For x = 0.5, the low dielectric tangent loss (tanδ) ∼ 0.35 with high dielectric constant (ε′) ∼ 612 was obtained at 1 MHz frequency. This suggests the use of these composites for dielectric substrate antennas. Further, the magnetic property reveals that the magnetic parameter of Gd3Fe5O12 composites varies by addition of MgFe2O4, i.e. at x = 0.5 and 0.75. The values of microwave operating frequency (ωm) are 3.5 GHz and 2.5 GHz for x = 0.5 and x = 0.75, respectively. These values suggest that the composites can be used in S-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. A L Kozlovskiy J. Ceram. Int. 46 8 10262 (2020)

    Article  Google Scholar 

  2. M V Zdorvets and A L Kozlovskiy J. Alloys comp. 815 152450 (2020)

    Article  Google Scholar 

  3. N A Algarou, Y Slimani, M A Almessiere, S Güner, A Baykal, I Ercan and P Kögerler Ceram. Intern. 46 7089 (2020)

    Article  Google Scholar 

  4. K Seevakan, A Manikandan, P Devendran and Y Slimani J. Magn. Magn. Mater. 486 165254 (2019)

    Article  Google Scholar 

  5. K Pubby J. Mater. Sci: Mater. in Elect. 31 599 (2020)

    Google Scholar 

  6. M N Akhtar, M A Khan, M Ahmad, M S Nazir, M Imran and A Ali J. Magn. Magn. Mater. 421 260 (2017)

    Article  Google Scholar 

  7. C P L Rubinger, D X Gouveia, J F Nunes, C C M Salgueiro, J A C Paiva and A M P F Grac Technol. Lett. 49 1341 (2007)

    Google Scholar 

  8. D Ravinder J. Mater. Sci. Lett. 22 1599 (2003)

    Article  Google Scholar 

  9. W Chen, D Liu and W Wu J. Magn. Magn. Mater. 422 49 (2017)

    Article  Google Scholar 

  10. Z Jia and R D K Misra Mater. Technol. 26 191 (2011)

    Article  Google Scholar 

  11. B Seongatae Nanotechnol. 8 86 (2009)

    Google Scholar 

  12. E S Lim and Y-M Kang Mater. Today Commun. 25 1 (2020)

    Google Scholar 

  13. A A Novakova, V Y Lanchinskaya, A V Volkov, T S Gendler and T Y Kiseleva J. Magn. Magn. Mater. 258 354 (2003)

    Article  Google Scholar 

  14. C R Vesital and Z J Chang Chem. Mater. 14 3817 (2002)

    Article  Google Scholar 

  15. A A Sattar J. Magn. Magn. Mater. 412 172 (2016)

    Article  Google Scholar 

  16. T Arun, S Vairavel, S Gokul Raj and J Justin Ceram Int. 38 2369 (2012)

    Article  Google Scholar 

  17. E Garskaite, K Gibson, A Leleckaite, J Glaser and D Niznansky J. Chem. Phys. 323 204 (2006)

    Google Scholar 

  18. M Yousaf, A Noor and S Xu Cerm. Int. 46 16524 (2020)

    Article  Google Scholar 

  19. K Praveena and S Srinath J. Magn Magn. Mater. 349 45 (2014)

    Article  Google Scholar 

  20. M N Akhtar, A B Sulong, S M Ahmad, M A Khan, A Ali and M U Islam J Alloys and Compd. 660 486 (2016)

    Article  Google Scholar 

  21. D-L Zhao J. Alloys and Compd. 480 634 (2009)

    Article  Google Scholar 

  22. R Pandey, L K Pradhan and M Kar J. Phys. Chem. Soli. 1 (2017)

  23. V Skumryev, S Stoyanov, Y Zhang, G Handjipanayis, D Givord and J Nogues Nature 423 850 (2003)

    Article  Google Scholar 

  24. H Zeng, J Li, J P Liu, L Z Wang and S Sun Nature 420 395 (2002)

    Article  Google Scholar 

  25. M Pardavi-Horvath J. Magn. Magn. Mater. 215 171 (2000)

    Article  Google Scholar 

  26. C Sudakar J. Magn. Magn. Mater. 268 75 (2004)

    Article  Google Scholar 

  27. Z Zheng, H Zhang and J Q Xiao J. Phys. D 47 115001 (2014)

    Article  Google Scholar 

  28. C Pahwa and S Mahadevan J. Alloys Compd. 725 1175 (2017)

    Article  Google Scholar 

  29. R K Kotnala, S Ahmad and A S Ahmed J. Appl. Phys. 112 054323 (2012)

    Article  Google Scholar 

  30. M A Almessiere J. Alloys Comp. 767 966 (2018)

    Article  Google Scholar 

  31. A V Trukhanov et al. RSC Advances 10 32638 (2020)

    Article  Google Scholar 

  32. N A Algarou, Y Slimani, M A Almessiere and A Baykal New Journal of Chemistry 44 5800 (2020)

    Article  Google Scholar 

  33. M A Rahman J. Magn. Magn. Mater. 345 89 (2013)

    Article  Google Scholar 

  34. M George, A M John and S S Nair J. Magn. Magn. Mater. 302 190 (2006)

    Article  Google Scholar 

  35. M B Mohamed and K EL-Sayed Composites: Part B 1 (2013)

  36. R Pandey, L K Pradhan and M Kar J. Phys. Chem. Soli. 1 (2017)

  37. S Torkain J. Magn. Magn. Mater. 416 408 (2016)

    Article  Google Scholar 

  38. A Lopez-Ortega, M Estarder, G Salazar-Alvarez and A G Roca J Nogues Phys. Rep. 553 1 (2015)

    Article  Google Scholar 

  39. J Mohammed and H Y Hafeez Res. Express 6 056111 (2019)

    Article  Google Scholar 

  40. J Mohammed et al. Chinese Phys. B 27 128104 (2018)

  41. D Roy J. Magn. Magn. Mater. 321 L11 (2009)

    Article  Google Scholar 

  42. B K Rai, L Wang and S R Mishra J. Nanosci. Nanotechn. 14 5272 (2014)

    Article  Google Scholar 

  43. Reetu, A Agarwal, S Sanghi, Ashima and N Ahlawat J. Appl. Phys.113 023908 (2013)

  44. P G Fernandez and J A Aramburu J. Phys. Chem. Lett. 1 647 (2010)

    Article  Google Scholar 

  45. T Mizokawa Rev. B 60 7309 (1999)

    Article  Google Scholar 

  46. S Raghuvanshi and F Mazaleyrat S N Kane AIP Adv. 8 047804 (2018)

    Article  Google Scholar 

  47. J P Wright, A C McLaughlin and J P Attfield J. Chem. Soc. Dalton Trans. 3663 (2000)

  48. M Guo, W Liu, X Xu, P Wu, H Zhang and Y Han J. Nanoparticles Res. 17 460 (2015)

    Article  Google Scholar 

  49. Md T Rahman, M Vargas and C V Ramana J. Alloy. Compd. 617 547 (2014)

  50. K Barick, K K Mishra and A K Arora J. Phys. D Appl. Phys. 44 355402 (2011)

    Article  Google Scholar 

  51. B K Bammannavar J. Appl. Phys. 104 064123 (2008)

    Article  Google Scholar 

  52. T Prodromakis and C Papavassiliou Appl. Surf. Sci. 255 6989 (2009)

    Article  Google Scholar 

  53. V R K Murthy and J Sobhanadari Phys. Status Solidi A 36 K133 (1976)

    Article  Google Scholar 

  54. J C Maxwell (Oxford University Press, New York) p 828 (1973)

  55. J Mohammed, T T Carol T, H Y Hafeez, D Basandrai, G R Bhadu, S K Godara, S B Narang and A K Srivastava Results Phys. 13 102307 (2019)

  56. N A Algarou et al. J. Taiwan Inst. Chem. Eng. 113 344 (2020)

    Article  Google Scholar 

  57. S Dagar and A Hoda J. Alloys Compd. 806 737 (2019)

    Article  Google Scholar 

  58. J E Davies, O Hellwiga, E E Fullerton, J S Jiang and S D Bader Phys. Lett. 86 262503 (2005)

    Google Scholar 

  59. L Zhang and Z Li J. Alloys Compd. 469 422 (2009)

    Article  Google Scholar 

  60. N A Algarou et al. A Manikandan and A Baykal Nanomaterials 10 1 (2020)

    Google Scholar 

  61. J P Liu Nanoscale Magn. Mater. Applic. 309 (2009)

  62. C Rong, H Zhang and R Chen J. Magn. Magn. Mater. 320 126 (2006)

    Article  Google Scholar 

  63. H F Du and A Du Phys. Stat. Solidi (b) 244 1401 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Srivastava.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Godara, S.K. & Srivastava, A.K. Influence of composition variation on structural, magnetic and dielectric properties of Gd3Fe5O12(x)/MgFe2O4(1−x) composite. Indian J Phys 96, 4173–4184 (2022). https://doi.org/10.1007/s12648-022-02365-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02365-5

Keywords