Skip to main content

Advertisement

Log in

Entropy generation on double-diffusive MHD slip flow of nanofluid over a rotating disk with nonlinear mixed convection and Arrhenius activation energy

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present study deals with the swirling flow problem for the nanoliquid over a radially stretchable rotating disk with the consideration of nonlinear mixed convection and chemical reaction defined by Arrhenius model. The surface of the stretchable rotating disk concedes with the Navier’s velocity slip condition. The temperature jump condition due to imperfect liquid–solid energy interaction is also considered. The flow model is established by incorporating the well-known Buongiorno’s nanofluid model and therefore, Brownian motion and thermophoretic diffusion are incorporated in the mathematical modeling. Heat transport is performed taking into account the heat generation owing to viscous and Joule dissipations and internal energy generation/absorption of the fluid. The coupled nonlinear partial differential equations (PDEs) are converted to the non-dimensional ordinary differential equations (ODEs) through the similarity transformation. These ODEs together with the physical conditions are then solved by the “bvp4c” technique. The impact of present flow characteristics on the entropy generation and Bejan number, flow fields (axial and radial velocities), temperature and concentration profiles are presented graphically. Moreover, the surface drag force, strength of energy and mass transport are calculated and presented in tabular forms. The outcomes show that an increase in magnetic and slip parameter values decrease the fluid velocities (axial and radial). Entropy generation gets improved with the increase in either Brinkman number or magnetic parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

\(\omega \) :

Angular velocity

\({{\hat{C}}_{{\hat{W}}}}\) :

Concentration at the disk surface

\({{\hat{C}}_\infty }\) :

Free stream concentration

\({{\mathrm{Re}}^{m}}\) :

Magnetic Reynolds number

\({\hat{U}},\,\,{\hat{V}}\) :

Velocities in \(\left( {r,\,\,\phi } \right) \) directions

g :

Gravitational acceleration

\({\sigma _f}\) :

Electrical conductivity

\({c_p}\) :

Heat capacitance

\(Q'\) :

Heat generation/absorption parameter

s :

Constant of fitted rate

\({D_{{\hat{T}}}}\) :

Thermophoresis diffusion coefficient

\({k_r}\) :

Chemical reaction strength

\(\lambda _1,\,\,\lambda _2\) :

Linear and nonlinear heat expansion parameters

\(\gamma _1,\,\,\gamma _2\) :

Slip coefficient for velocity components \(\left( {{\hat{U}},\,\,{\hat{V}}} \right) \)

\(\varepsilon \) :

Boltzmann constant

b :

Stretching constant

\({l_3}\) :

Thermal slip parameter

M :

Magnetic parameter

Pr:

Prandtl number

\(B_0\) :

Strength of magnetic field

\({{\hat{T}}_{{\hat{W}}}}\) :

Temperature at the disk surface

\({{\hat{T}}_\infty }\) :

Free stream temperature

\({D_m}\) :

Diffusivity of the magnetic field

\({\upsilon _f}\) :

Kinematic viscosity

\({\rho _f}\) :

Density

\({\hat{T}}\) :

Temperature

\({\mu _f}\) :

Dynamic viscosity

\(A_c\) :

Coefficient of activation energy

\({k_f}\) :

Thermal conductivity

\({\hat{C}}\) :

Concentration

\({D_B}\) :

Brownian diffusion coefficient

\(\lambda _3,\,\,\lambda _4\) :

Linear and nonlinear concentration expansion parameters

Ng :

Entropy generation rate

\({\gamma _3}\) :

Thermal slip coefficient

\(l_1,\,\,l_2\) :

Velocity slip parameters

\(\chi \) :

Mixed convection variable

\({B_t}\) :

Nonlinear convection parameters due to temperature

Nt :

Thermophoretic parameter

Q :

Heat generation/absorption parameter

Re:

Reynolds number

Nb:

Brownian motion parameter

\(\delta \) :

Temperature ratio parameter

A :

Activation energy parameter

\({\mathrm{{C}}_f}\) :

Skin friction coefficient

\(S{h_x}\) :

Mass transference rate

\({\Upsilon _w}\) :

Heat flux

\({\tau _w}\) :

Shear stress

\({\alpha _a}\) :

Temperature difference parameter

Ec:

Eckert number

Sc:

Schmidt number

\(K_c\) :

Chemical reaction parameter

\({B_c}\) :

Nonlinear convection parameters due to concentration

N :

Ratio of concentration to temperature buoyancy force

\(N{u_x}\) :

Heat transference rate

L :

Diffusive variable

\({\Upsilon _m}\) :

Mass flux

Br :

Brinkman parameter

\({\alpha _b}\) :

Concentration difference parameter

References

  1. M Turkyilmazoglu Chem. Engg. Sci. 84 182 (2012)

  2. A Kumar, R Singh, G S Seth and R. Tripathi J. Nanofluids 7 338 (2018)

  3. A Bhattacharyya, G S Seth, R Kumar and A J Chamkha J. Therm. Anal. Calorim. 139 1655 (2019)

  4. T Tayebi and A J Chamkha J. Therm. Sci. Engg. Appl. 12 031009 (2020)

    Article  Google Scholar 

  5. A Kumar, R Singh, G S Seth and R Tripathi Int. J. Heat Tech. 36 1430 (2018)

  6. M Ghalambaz, A Doostani, E Izadpanahi, A J Chamkha J. Therm. Anal. Calorim. 139 2321 (2020)

  7. Y Menni, A J Chamkha, N Massarotti, H Ameur, N Kaid and M Bensafi Int. J. Num. Meth. Heat Fluid Flow 30 4349 (2020)

  8. A S Dogonchi, M K Nayak, N Karimi, A J Chamkha and D D Ganji J. Therm. Anal. Calorim. 141 2109 (2020)

  9. A Kumar, R Tripathi, R Singh and G S Seth Ind. J. Phys. 94 319 (2020)

  10. A Kumar, R Singh and R Tripathi Int. Conf. Math. Modell. Sci. Comp. 308 279 (2020)

  11. T Von Karman Z. Angew. Math. Mech. 1 233 (1921)

  12. P T Griffiths J. Non-Newtonian Fluid Mech. 221 9 (2015)

  13. C Ming, L Zheng, X Zhang, F Liu and V Anh Int. Comm. Heat Mass Transf. 79 81 (2016)

  14. D Doh and M Muthtamilselvan Int. J. Mech. Sci. 130 350 (2017)

    Article  Google Scholar 

  15. T Hayat, M I Khan, S Qayyum, M I Khan and A Alsaedi J. Mol. Liq. 264 375 (2018)

  16. M Gholinia, K Hosseinzadeh, H Mehrzadi, D Ganji and A Ranjbar Case Stud. Ther. Engg. 13 100356 (2019)

  17. A Bhat and N N Katagi Ain Shams Engg. J. 11 149 (2020)

    Article  Google Scholar 

  18. M Turkyilmazoglu Int. J. Mult. Flow 127 103260 (2020)

  19. A Bejan Energy 5 720 (1980)

  20. M Rashidi, S Abelman and N F Mehr Int. J. Heat Mass Transf. 62 515 (2013)

  21. A Arikoglu, I Ozkol and G Komurgoz Appl. Energy 85 1225 (2008)

    Article  Google Scholar 

  22. A Renuka, M Muthtamilselvan D H Doh and G R Cho Math. Comp. Simul. 171 152 (2020)

  23. S Qayyum, M I Khan, T Hayat, A Alsaedi and M Tamoor Int. J. Heat Mass Transf. 127 933 (2018)

  24. S Abbas, M I Khan, S Kadry, W Khan, M I Rehman and M Waqas Comp. Meth. Prog. Biom. 190 105362 (2020)

  25. X Chen, T Zhao, M Q Zhang and Q Chen Int. J. Heat Mass Transf. 137 1191 (2019)

    Article  Google Scholar 

  26. M I Khan, F Shah, T Hayat and A Alsaedi, Physica A 527 121154 (2019)

    Article  MathSciNet  Google Scholar 

  27. T Tayebi and A J Chamkha Int. J. Num. Meth. Heat Fluid Flow 30 1115 (2019)

    Article  Google Scholar 

  28. T Tayebi and A J Chamkha J. Therm. Anal. Calorim. 139 2165 (2020)

    Article  Google Scholar 

  29. G R Kefayati and H Tang Int. J. Heat Mass Transf. 131 346 (2019)

    Article  Google Scholar 

  30. A Kumar, R Tripathi, R Singh and M A Sheremet Ind. J. Phys. (2020). https://doi.org/10.1007/s12648-020-01800-9.

    Article  Google Scholar 

  31. A I Alsabery, E Gedik, A J Chamkha and I Hashim Heat Mass Transf. 56 321 (2020)

    Article  ADS  Google Scholar 

  32. G Rasool, T Zhang, A J Chamkha, A Shafiq, I Tlili and G Shahzadi Entropy 22 18 (2020)

    Article  ADS  Google Scholar 

  33. A Kumar, R Tripathi, R Singh and V Chaurasiya Physica A 551 123972 (2020)

    Article  MathSciNet  Google Scholar 

  34. M Khan, A Hafeez and J Ahmed Physica A 124085 (2020)

  35. T Hayat, S A Khan, M I Khan and A Alsaedi Comp. Meth. Prog. Biom. 177 57 (2019)

  36. M I Khan, M Ayub and H Khan Heliyon 5 e01863 (2019)

    Article  Google Scholar 

  37. M Alghamdi Coatings 10 86 (2020)

  38. M Asma, W Othman, T Muhammad, F Mallawi and B Wong Symmetry 11 1282 (2019)

    Article  Google Scholar 

  39. S Ahmad, M I Khan, T Hayat and A Alsaedi Physica A 540 123057 (2020)

    Article  MathSciNet  Google Scholar 

  40. A Kumar, R Tripathi and R Singh J. Braz. Soc. Mech. Sci. Engg. 41 306 (2019)

    Article  Google Scholar 

  41. H S Takhar, A J Chamkha and G Nath Heat Mass Transf. 39 297 (2003)

    Article  ADS  Google Scholar 

  42. A J Chamkha and A Mudhaf Int. J. Ther. Sci. 44 267 (2005)

    Article  Google Scholar 

  43. K G Kumar, M G Reddy, M V V N L Sudharani, S A Shehzad and A J Chamkha Physica A 541 123330 (2020)

    Article  Google Scholar 

  44. M V Krishna and A J Chamkha Int. Comm. Heat Mass Transf. 113 104494 (2020)

    Article  Google Scholar 

  45. M V Krishna, N A Ahamad and A J Chamkha Alex. Engg. J. 59 565 (2020)

    Article  Google Scholar 

  46. H Attia Int. Comm. Heat Mass Transf. 28 439 (2001)

  47. A Bejan Advanced Engineering Thermodynamics (Wiley) (2016)

  48. M Awad Int. J. Heat Mass Transf. 94 101 (2016)

  49. L F Shampine, I Gladwell and S Thompson Solving ODEs with MATLAB (Cambridge University Press, Cambridge) (2003)

    Book  Google Scholar 

  50. J Raza, F M Oudina and A J Chamkha Mult. Model. Mat. Struct. 15 737 (2019)

    Article  Google Scholar 

  51. T Hayat, M I Khan, A Alsaedi and M I Khan, Int. Commun. Heat Mass Transf. 89 190 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The first two authors are thankful to the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India, for providing the financial support through the research Project with No.: ECR/2017/001754 dated 31-07-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Ray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ray, R.K. & Sheremet, M.A. Entropy generation on double-diffusive MHD slip flow of nanofluid over a rotating disk with nonlinear mixed convection and Arrhenius activation energy. Indian J Phys 96, 525–541 (2022). https://doi.org/10.1007/s12648-021-02015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02015-2

Keywords

Navigation