Skip to main content
Log in

Mixed convection nanofluid flow in a non-Darcy porous medium with variable permeability: entropy generation analysis

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The study discusses the issue of entropy generated in a mixed convection Cu–water nanofluid flow in an inclined channel filled with a non-Darcy porous medium with variable permeability taking into account the Navier slip and convection at the boundary. The equations of momentum and temperature are highly nonlinear and coupled, and these are solved using the homotopy analysis method after converting to the dimensionless form. The flow velocity and temperature expressions as required during the entropy generation analysis are obtained. Bejan number is also obtained which indicates the role of heat transfer and viscous dissipation in the entropy generation process. The consequences of the relevant flow parameters are discussed, and the results are shown graphically. It was observed that entropy is minimum just above the center of the channel width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S Choi and J Eastman ASME International Mechanical Engineering Congress and Exposition 66 p 99 (1995)

    Google Scholar 

  2. S Lee, S U S Choi, S Li and J Eastman J. Heat Transf. 121 280 (1999)

    Article  Google Scholar 

  3. A Kasaeian et al Int. J. Heat Mass Transf. 107 778 (2017)

  4. S Rashidi, O Mahian and E M Languri J. Therm. Anal. Calorim. 131 2027 (2018)

    Article  Google Scholar 

  5. Z Zhang, J Cai, F Chen, H Li, W Zhang and W Qi Renew. Energy 118 527 (2018)

    Article  Google Scholar 

  6. M Q Al-Odat and A Al-Ghamdi Appl. Math. Mech.-Engl. 33 195 (2012)

    Article  MathSciNet  Google Scholar 

  7. P V S N Murthy, C RamReddy, A J Chamkha and A M Rashad Int. Commun. Heat Mass 7 41 (2013)

    Article  Google Scholar 

  8. N C Rosca and A V Rosca Int. J. Numer. Methods Heat 24 970 (2014)

    Article  Google Scholar 

  9. C RamReddy, P V S N Murthy, A M Rashad and A J Chamkha Eur. Phys. J. Plus 129 1 (2014)

    Article  Google Scholar 

  10. A J Chamkha, A Rashad, C RamReddy and P V S N Murthy Spec. Top. Rev. Porous Media Int. J. 5 27 (2014)

  11. D Srinivasacharya and P V Kumar Int. J. Chem. Eng. 2015 1 (2015)

    Article  Google Scholar 

  12. N Eldabe and M Abou-zeid J. Egypt Math. Soc. 25 375 (2017)

    Article  MathSciNet  Google Scholar 

  13. T Chakraborty, K Das and P K Kundu J. Mech. Sci. Technol. 31 2443 (2017)

    Article  Google Scholar 

  14. D Srinivasacharya and P V Kumar Propuls. Power Res. 7 147 (2018)

    Article  Google Scholar 

  15. M S Mahmoud and H Deresiewicz Int. J. Numer. Anal. Met. 4 57 (1980)

    Article  Google Scholar 

  16. A H D Cheng Water Resour. Res. 20 980 (1984)

  17. S N Murthy and J Feyen Int. J. Eng. Sci. 27 1661 (1989)

    Article  Google Scholar 

  18. D A S Rees and I Pop Int. J. Heat Mass Transf. 43 2565 (2000)

    Article  Google Scholar 

  19. D Pal Commun. Nonlinear Sci. 15 3974 (2010)

  20. V R Prasad, B Vasu, O A Beg and D R Parshad J. Porous Media 15 261 (2012)

    Article  Google Scholar 

  21. B G Srivastava and S Deo Appl. Math. Comput. 219 8959 (2013)

    Article  Google Scholar 

  22. M S A Zaytoon, T L Alderson and M H Hamdan J. Appl. Math. Phys. 04 86 (2016)

    Article  Google Scholar 

  23. A Bejan J. Heat Transf. 101 718 (1979)

    Google Scholar 

  24. H F Oztop and K Al-Salem Renew. Sust. Energy Rev. 16 911 (2012)

    Article  Google Scholar 

  25. O Mahian et al Int. J. Heat Mass Transf. 65 514 (2013)

  26. M M Awad Adv. Mech. Eng. 7 1 (2015)

  27. M Siavashi, V Bordbar and P Rahnama Appl. Therm. Eng. 110 1462 (2017)

    Article  Google Scholar 

  28. N Shehzad, A Zeeshan, R Ellahi and S Rashidi Entropy 20 851 (2018)

    Article  ADS  Google Scholar 

  29. S Noreen and Q U Ain J. Therm. Anal. Calorim. 137 1991 (2019)

    Article  Google Scholar 

  30. S Liao Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman and Hall/CRC) (2004)

  31. R K Tiwari and M K Das Int. J. Heat Mass Transf. 50 2002 (2007)

    Article  Google Scholar 

  32. D A Nield J. Heat Transf. 129 1459 (2007)

    Google Scholar 

  33. M A Mansour, S E Ahmed and A J Chamkha Int. J. Numer. Methods Heat Fluid Flow 27 379 (2017)

    Article  Google Scholar 

  34. A Barletta and E Zanchini Int. J. Heat Mass Transf. 42 3169 (1999)

    Article  Google Scholar 

  35. S Marudappa and J C Umavathi Heat Transf. Asian Res. 46 176 (2017)

    Article  Google Scholar 

  36. E Zanchini Int. J. Heat Mass Transf. 41 3949 (1998)

  37. V S Arpaci and P S Larsen Convection Heat Transfer (London: Prentice Hall) (1984)

  38. M K Nayak et al Indian J. Phys. 92 1017 (2018)

  39. M K Nayak, S Shaw and O D Makinde Indian J. Pure Appl. Phys. 56 773 (2018)

    Google Scholar 

  40. A Aziz, W Jamshed and T Aziz Open Phys. 16 123 (2018)

    Article  Google Scholar 

  41. M K Nayak, S Shaw and A J Chamkha Arab. J. Sci. Eng. 44 1269 (2019)

    Article  Google Scholar 

  42. N S Bondareva et al Adv. Powder Technol. 28 244 (2016)

  43. N S Gibanov et al Numer. Heat Transf. A-Appl. 72 479 (2017)

  44. N S Gibanov et al J. Magn. Magn. Mater. 452 193 (2018)

  45. M S Astanina et al Int. J. Mech. Sci. 136 493 (2018)

  46. S Liao Commun. Nonlinear Sci. 15 2003 (2010)

  47. A Barletta Int. J. Heat Mass Transf. 41 3501 (1998)

  48. J C Umavathi and S Veershetty Transp. Porous Med. 95 111 (2012)

    Article  MathSciNet  Google Scholar 

  49. A Baytas Int. J. Energy Res. 27 975 (2003)

  50. S Mahmud and R A Fraser Int. J. Therm. Sci. 44 21 (2005)

    Article  Google Scholar 

  51. J C Umavathi and M Sheremet Eur. J. Mech. B Fluids 55 132 (2016)

    Article  ADS  Google Scholar 

  52. A Zeeshan et al Neural Comput. Appl. 30 3371 (2018)

Download references

Acknowledgements

The authors thank the TEQIP-III, NIT Mizoram for supporting Mr. Lalrinpuia Tlau financially for his doctoral study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surender Ontela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tlau, L., Ontela, S. Mixed convection nanofluid flow in a non-Darcy porous medium with variable permeability: entropy generation analysis. Indian J Phys 95, 2095–2106 (2021). https://doi.org/10.1007/s12648-020-01856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01856-7

Keywords

Navigation