Skip to main content
Log in

Conductivity and free volume studies on bismuth sulfide/PVA:polypyrrole nanocomposites

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The polymer composite films of polyvinylalcohol:polypyrrole blend containing different wt% of bismuth sulfide (Bi2S3) particles are prepared through in situ oxidation followed by solution casting method, where the particles are coated with blend matrix. The XRD studies affirm the enhanced crystallinity of the composites. The variation of crystallite size is measured with the Debye–Scherrer method. The DSC studies are used to investigate the glass transition that occurred in the Bi2S3 particles-filled polymer blend matrix. The AFM and SEM studies illustrated the effect of insertion of metallic sulfide particles on the surface morphology. The addition of bismuth sulfide particles results in the increased mechanical properties of the composite matrix. The electrical conductivity is determined by the Cole–Cole plot fitted using equivalent circuit model, and the conductivity is observed to be enhanced with an increase in filler content due to the enhanced conductive pathways. The variation of o-Ps lifetime, o-Ps intensity, average size of the free volume and fraction of free volume is studied using Tao–Eldrup Model. The obtained free volume parameters are correlated with the electrical, microstructural and thermal properties. The increased interfacial width is illustrated in terms of increased free volume size. The enhanced free volume provides more space for mobility of charge carriers, and hence the conductivity is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J Liu, Y Luo, Y Wang, Y Deng and X Xie Rsc Adv. 5 96258 (2015)

    Article  Google Scholar 

  2. M T Ramesan Polym. - Plast. Technol. Eng. 51 1223 (2012)

  3. N Romyen, S Thongyai, P Praserthdam and G A Sotzing J. Mater. Sci. Mater. Electron. 24 2897 (2013)

    Article  Google Scholar 

  4. E F De Melo, K G B Alves, S A Junior and C P De Melo J. Mater. Sci. 48 3652 (2013)

    Article  ADS  Google Scholar 

  5. W Yin, H Liu and L H Gan J. Appl. Polym. Sci. 72 95 (1999)

    Article  Google Scholar 

  6. W Sun et al. J. Power Sources 309 135 (2016)

    Article  ADS  Google Scholar 

  7. V Hebbar and R F Bhajantri Mater. Sci. Eng. B 224 171 (2017)

    Article  Google Scholar 

  8. P Hazra, A Jana, M Hazra and J Datta Rsc Adv. 4 33662 (2014)

    Article  Google Scholar 

  9. Y Wang, K F Cai and X Yao J. Nanoparticle Res. 14 848 (2012)

    Article  ADS  Google Scholar 

  10. M Mukherjee, D Chakravorty and P M G Nambissan Phys. Rev. B 57 848 (1998)

    Article  Google Scholar 

  11. R Xia et al. Phys. Chem. Chem. Phys. 3616 3616 (2017)

    Article  Google Scholar 

  12. J C Machado, G G Silva and L S Soares J. Polym. Sci. Part B Polym. Phys. 38 1045 (2000)

    Article  ADS  Google Scholar 

  13. G Xue, J Zhong, S Gao and B Wang Carbon 96 871 (2016)

    Article  Google Scholar 

  14. C Basavaraja, P X Thinh, W J Kim, M Revanasiddappa and D S Huh Polym. Compos. 33 1534 (2012)

    Google Scholar 

  15. T Sheela et al. J. Non. Cryst. Solids 454 19 (2016)

    Article  ADS  Google Scholar 

  16. S Ningaraju and H B Ravikumar J. Polym. Res. 24 11 (2017)

    Article  Google Scholar 

  17. K H Kate, K Singh and P K Khanna Synth. React. Inorganic, Met. Nano-Metal Chem. 41 199 (2011)

  18. Z-H Ge, B-P Zhang, Z-X Yu and B-B Jiang Crystengcomm. 14 2283 (2012)

    Google Scholar 

  19. S K Sharma et al. Phys. Chem. Chem. Phys. 16 1399 (2014)

    Article  Google Scholar 

  20. P Bala, B K Samantaray, S K Srivastava and G B Nando J. Appl. Polym. Sci. 92 3583 (2004)

    Article  Google Scholar 

  21. S Ibrahim and M R Johan Int. J. Electrochem. Sci. 7 2596 (2012)

    Google Scholar 

  22. S K Sharma, J Prakash, K Sudarshan, P Maheshwari, D Sathiyamoorthy and P K Pujari Phys. Chem. Chem. Phys. 14 10972 (2012)

    Article  Google Scholar 

  23. V Hebbar, R F Bhajantri and J Naik J. Mater. Sci. Mater. Electron. 28 5827 (2017)

    Article  Google Scholar 

  24. P P Kundu, J Biswas, H Kim and S Choe Eur. Polym. J. 39 1585 (2003)

    Google Scholar 

  25. R F Bhajantri, V Ravindrachary, A Harisha, C Ranganathaiah and G N Kumaraswamy Appl. Phys. A 87 797 (2007)

    Google Scholar 

  26. D K Pradhan, B K Samantaray, R N P Choudhary, N K Karan, R Thomas and R S Katiyar Int. J. Electrochem. Sci. 2 861 (2007)

    Google Scholar 

  27. S K Sharma, K Sudarshan, M Sahu and P K Pujari (2016) Rsc Adv. 6 67997

    Article  Google Scholar 

  28. A Dorigato, Y Dzenis and A Pegoretti Mech. Mater. 61 79 (2013)

    Google Scholar 

  29. B Qi, S R Lu, X E Xiao, L L Pan, F Z Tan and J H Yu, eXPRESS Polym. Lett. 8 467 (2014)

    Google Scholar 

  30. X Zhao, Q Zhang, D Chen and P Lu (2010) Macromolecules 43 2357

    Article  ADS  Google Scholar 

  31. S K Sharma, J Prakash and P K Pujari Phys. Chem. Chem. Phys. 17 29201 (2015)

    Article  Google Scholar 

  32. Y Chen, Y Qi, Z Tai, X Yan, F Zhu and Q. Xue Eur. Polym. J. 48 1026 (2012)

    Article  Google Scholar 

  33. M Sassi, A Oueslati and M Gargouri Appl. Phys. A 119 763 (2015)

    Google Scholar 

  34. W Liu et al. Nano Lett. 15 2740 (2015)

    Article  ADS  Google Scholar 

  35. S J Tao J. Chem. Phys. 56 5499 (1972)

    Article  ADS  Google Scholar 

  36. M Eldrup, D Lightbody and J N Sherwood Chem. Phys. 63 51 (1981)

    Google Scholar 

  37. V Ravindrachary, R F Bhajantri, A Harisha, Ismayil and C Ranganathaiah Phys. Status Solidi C 6 2438 (2009)

    Article  Google Scholar 

  38. S D Praveena, V Ravindrachary and R F Bhajantri Polym. Compos. 35 1267 (2014)

    Google Scholar 

  39. U Rana, P M G Nambissan, S Malik and K Chakrabarti, Phys. Chem. Chem. Phys. 16 3292 (2014)

    Article  Google Scholar 

  40. G Dlubek, M A Alam, M Stolp and H-J Radusch J. Polym. Sci. Part B Polym. Phys. 37 1749 (1999)

    Article  ADS  Google Scholar 

  41. R F Bhajantri, V Ravindrachary, A Harisha, Ismayil and C Ranganathaiah Phys. Status Solidi C 6, 2429 (2009)

    Article  Google Scholar 

  42. K V Aneesh Kumar, S Krishnaveni, P M G Nambissan, C Ranganathaiah and H B Ravikumar J. Non. Cryst. Solids 471 151 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, Vidyashree Hebbar is thankful to Karnatak University, Dharwad, for awarding UGC-UPE fellowship (KU/Sch/UGC-UPE/2014-15/890). The authors also thank the UGC, New Delhi, for the SAP-CAS Phase-II (F.530/9/CAS-II/2015(SAP-I) for providing research grants, and Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, for the research projects (SR/FTP/PS-011/2010), (SB/EMEQ-089/2013) and (SB/EMEQ-213/2014). The authors would like to acknowledge USIC, Karnatak University, Dharwad, for DSC and AFM facilities. The authors would further acknowledge MIT, Manipal, for XRD measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R F Bhajantri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebbar, V., Ravikumar, H.B., Nandimath, M. et al. Conductivity and free volume studies on bismuth sulfide/PVA:polypyrrole nanocomposites. Indian J Phys 93, 147–158 (2019). https://doi.org/10.1007/s12648-018-1280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1280-7

Keywords

PACS Nos.

Navigation