Skip to main content
Log in

Higher-order squeezing oscillations in Jaynes–Cummings model of a pair of cold atoms

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We study interaction between a pair of indistinguishable two-level atoms and the single-mode cavity field. It is supposed that the pair of two-level atoms is laser cooled and trapped into the ground vibrational state, in which vibrational quantum number \(\langle n_v\rangle =0\). Two Jaynes–Cummings models are investigated. One is the Jaynes–Cummings model with intensity-dependent coupling and the another is the two-photon Jaynes–Cummings model of a pair of indistinguishable two-level atoms. It should be noted that in the present model, at initial moment \(t=0\), in intensity-dependent Jaynes–Cummings model the cavity field is prepared in Holstein–Primakoff SU(1,1) CS, while in two-photon Jaynes–Cummings model it is prepared in the squeezed vacuum state. Moreover, at initial moment \(t=0\), pair of atoms is supposed to be in the first excited state \(\vert e_1\rangle \) in both models. By using exact analytical solutions for state-vectors of the coupled atom-field systems amplitude-squared squeezing of the quantized cavity field is examined as a function of the \(\vert \xi \vert \) parameter. In this situation, in both models higher-order squeezing has the tendency towards oscillations, but exact periodicity of these oscillations is violated by the analogy with the second-order squeezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S Jochim et al. Phys. Rev. Lett. 91 240402 (2003)

    Article  ADS  Google Scholar 

  2. K Xu, T Mukaiyama, J R Abo-Shaeer, J K Chin, D E Miller and W Ketterle Phys. Rev. Lett. 91 210402 (2003)

    Article  ADS  Google Scholar 

  3. S Durr, T Volz, A Marte and G Rempe Phys. Rev. Lett. 92 020406 (2004)

    Article  ADS  Google Scholar 

  4. D Kleppner Phys. Today 57 12 (2004)

    Article  Google Scholar 

  5. M Vatasescu J. Phys. B At. Mol. Opt. Phys. 42 165303 (2009)

    Article  ADS  Google Scholar 

  6. D DeMille Phys. Rev. Lett. 88 067901 (2002)

    Article  ADS  Google Scholar 

  7. C M Tesch and R de Vivie-Riedle Phys. Rev. Lett. 89 157901 (2002)

    Article  ADS  Google Scholar 

  8. M Taglieber, A-C Voight, F Henkel, S Fray, T W Hansch and K Dieckmann Phys. Rev. A 73 011402 (2006)

    Article  ADS  Google Scholar 

  9. J I Cirac and P Zoller Phys. Rev. Lett. 74 4091 (1995)

    Article  ADS  Google Scholar 

  10. K-A Suominen J. Phys. B: At. Mol. Opt. Phys. 29 5981 (1996)

    Article  ADS  Google Scholar 

  11. W Wen and H Li J. Phys. B: At. Mol. Opt. Phys. 46 035302 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  12. T W Haench and Y R Shen Laser Spectroscopy VII, Springer Series in Optical Sciences, Vol. 49. (Berlin: Springer-Verlag) (1987)

    Google Scholar 

  13. R V Krems Int. Rev. Phys. Chem. 24 99 (2005)

    Article  Google Scholar 

  14. A J Leggett Rev. Mod. Phys. 73 307 (2001)

    Article  ADS  Google Scholar 

  15. K B Davis et al. Phys. Rev. Lett. 75 3969 (1995)

    Article  ADS  Google Scholar 

  16. C A Regal, M Greiner and D S Jin Phys. Rev. Lett. 92 040403 (2004)

    Article  ADS  Google Scholar 

  17. U Eichmann et al. Phys. Rev. Lett. 70 2359 (1993)

    Article  ADS  Google Scholar 

  18. Y Yamamoto and H A Haus Rev. Mod. Phys. 58 1001 (1986)

    Article  ADS  Google Scholar 

  19. C M Caves Phys. Rev. D 23 1693 (1981)

    Article  ADS  Google Scholar 

  20. A Furusawa, J L Sorensen, S L Braunstein, C A Fuchs, H J Kimble and E S Polzik Science 282 706 (1998)

    Article  ADS  Google Scholar 

  21. A Chakrabarti and A Chakraborti Indian J. Phys. 86 791 (2012)

    Article  ADS  Google Scholar 

  22. A Aspect, P Grangier and G Roger Phys. Rev. Lett. 49 91 (1982)

    Article  ADS  Google Scholar 

  23. M A Nielsen and I L Chuang Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) (2000)

    Google Scholar 

  24. G Brida, M Genovese and F Piacentini J. Phys Conf. Series 306(1), 012011 (2011)

    Article  ADS  Google Scholar 

  25. A Einstein, B Podolsky and N Rosen Phys. Rev. 47 777 (1935)

    Article  ADS  Google Scholar 

  26. V I Koroli Int. J. Quant. Inf. 5 199 (2007)

    Article  Google Scholar 

  27. C K Hong and L Mandel Phys. Rev. Lett. 54 323 (1985)

    Article  ADS  Google Scholar 

  28. C K Hong and L Mandel Phys. Rev. A 32 974 (1985)

    Article  ADS  Google Scholar 

  29. V Buzek Phys. Rev. A 39 3196 (1989)

    Article  ADS  Google Scholar 

  30. V I Koroli Int. J. Quant. Inf. 7 Supplement 179 (2009)

  31. N A Enaki and V I Koroli J. Optoelectron. Laser 9 369 (1998)

    Google Scholar 

  32. N A Enaki and V I Koroli J. Opt. Soc. Am. A 16 2973 (1999)

    Article  Google Scholar 

  33. K Wodkiewicz and J H Eberly J. Am. Opt. Soc. B 2 458 (1985)

    Article  ADS  Google Scholar 

  34. C C Gerry Phys. Rev. A 31 2721 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  35. V I Koroli and V V Zalamai J. Phys. B At. Mol. Opt. Phys. 42 035505 (2009)

    Article  ADS  Google Scholar 

  36. V I Koroli Cooperative Interaction of Photons and Phonons with Radiation Centers, Quantum Optics (Saarbrucken: LAP, LAMBERT Academic Publishing) (2013)

  37. D J Wineland Rev. Mod. Phys. 85 1103 (2013)

    Article  ADS  Google Scholar 

  38. F Diedrich, J C Bergquist, W M Itano and D J Wineland Phys. Rev. Lett. 62 403 (1989)

    Article  ADS  Google Scholar 

  39. D Leibfried et al AIP Conf. Proc. 551 130 (2001)

    Article  ADS  Google Scholar 

  40. N A Enaki and V I Koroli J. Phys. B At. Mol. Opt. Phys. 31 3583 (1998)

    Article  ADS  Google Scholar 

  41. N A Enaki, V I Koroli and S Bazgan Indian J. Phys. 88 25 (2014)

    Article  Google Scholar 

  42. M Ban J. Opt. Soc. Am. A 10 1347 (1993)

    Article  ADS  Google Scholar 

  43. C C Gerry Phys. Rev. A 37 2683 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  44. L C Biedenharn and J D Louck Angular Momentum in Quantum Physics (Reading, MA: Addison-Wesley) (1981)

  45. A M Perelomov Generalized Coherent States and Their Applications (Moscow: Nauka) (in Russian) (1987)

  46. T Holstein and H Primakoff Phys. Rev. 58 1048 (1940)

    Article  ADS  Google Scholar 

  47. M Hillery Opt. Commun. 62 135 (1987)

    Article  ADS  Google Scholar 

  48. M Hillery Phys. Rev. A 36 3796 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Koroli.

Appendix

Appendix

In order to study squeezing properties of quantized cavity field by using exact analytical solutions given by Eqs. (8) and (9), we have found mean values \(\langle a^2\rangle \), \(\langle a^4\rangle \), \(\langle a^{\dagger 2}\rangle \), \(\langle a^{\dagger 4}\rangle \), \(\langle a^{\dagger 2}a^2\rangle \) and \(\langle a^2a^{\dagger 2}\rangle \), which are written through functions \(A_{2}(t)\), \(A_{4}(t)\), \(B_{1}(t)\) and \(B_{2}(t)\). In intensity-dependent JCM these functions are given by

$$\begin{aligned} A_2(t)&= \vert \xi \vert ^2\sum _{n=0}^{\infty }P_n \Bigg [\cos \left(\sqrt{2n^2+2n+1}\tau \right)\nonumber \\&\quad \times \cos\left (\sqrt{2(n+2)^2+2(n+2)+1}\tau \right) \nonumber \\&\quad \times \sqrt{(n+1)(n+2)} + \{(n+3)^{3/2}\sqrt{n+2}\nonumber \\&\quad \times (n+1) + n^{3/2}\sqrt{n+1}(n+2)\}\nonumber \\&\quad \times \frac{\sin \left(\sqrt{2n^2+2n+1}\tau \right)}{\sqrt{2n^2 + 2n + 1}}\nonumber \\&\quad \times \frac{\sin \left(\sqrt{2(n+2)^2+2(n+2)+1}\tau \right)}{\sqrt{2(n+2)^2 + 2(n+2)+1}}\Bigg ]\end{aligned}$$
(17)
$$\begin{aligned} A_4(t)&= \vert \xi \vert ^4\sum _{n=0}^{\infty }P_n\Bigg [\cos \left(\sqrt{2n^2+2n+1} \tau \right)\nonumber \\&\quad \times \cos \left(\sqrt{2(n+4)^2+2(n+4)+1}\tau \right) \nonumber \\&+\{(n+5)^{3/2}\sqrt{n+1} + n^{3/2}\sqrt{n+4}\}\nonumber \\&\quad \times \frac{\sin \left(\sqrt{2n^2+2n+1}\tau \right)}{\sqrt{2n^2+2n+1}}\nonumber \\&\quad \times \frac{\sin \left(\sqrt{2(n+4)^2+2(n+4)+1}\tau \right)}{\sqrt{2(n+4)^2 + 2(n+4)+1}}\Bigg ]\nonumber \\&\quad \times \sqrt{(n+1)(n+2)(n+3)(n+4)},\end{aligned}$$
(18)
$$\begin{aligned} B_{1}(t)&= \sum _{n=0}^{\infty }P_n\Bigg [\cos ^2\left(\sqrt{2n^2+2n+1} \tau \right)n(n-1) \nonumber \\&\quad + n\{(n+1)^3 + n(n-1)(n-2)\}\nonumber \\&\quad \times \frac{\sin ^2\left(\sqrt{2n^2+2n+1}\tau \right)}{2n^2+2n+1}\Bigg ],\end{aligned}$$
(19)
$$\begin{aligned} B_{2}(t)&= \sum _{n=0}^{\infty }P_n\Bigg [\cos ^2\left(\sqrt{2n^2+2n+1}\tau \right)\nonumber \\&\quad \times (n+1)(n+2) \nonumber \\&\quad + \{(n+1)^2(n+2)(n+3) + n^3(n+1)\}\nonumber \\&\quad \times \frac{\sin ^2\left(\sqrt{2n^2+2n+1}\tau \right)}{2n^2+2n+1}\Bigg ], \end{aligned}$$
(20)

where \(P_n=\vert Q_n\vert ^2\). In two-photon JCM these functions have the following form

$$\begin{aligned} A_2(t)&= \vert \xi \vert ^2(1 - \vert \xi \vert ^2)^{1/2}\sum _{n=0}^{\infty }\vert \xi \vert ^{2n}\nonumber \\&\quad \times \Bigg [\cos \left(\sqrt{n^2+n+1}\tau \right) \nonumber \\&\quad \times \cos \left(\sqrt{(n+2)^2+(n+2)+1}\tau \right)\nonumber \\&\quad +\{(n+3)(n+4) +n(n-1)\}\nonumber \\&\quad \times \frac{\sin \left(\sqrt{n^2+n+1}\tau \right)}{2\sqrt{ n^2+n+1}} \nonumber \\&\quad \times \frac{\sin \left(\sqrt{(n+2)^2+(n+2)+1}\tau \right)}{\sqrt{(n+2)^2+(n+2)+1}}\Bigg ] \nonumber \\&\quad \times \sqrt{(n+1)(n+2)}\nonumber \\&\quad \times \left[ \frac{\Gamma (n+\frac{1}{2})\Gamma (n+\frac{5}{2})}{n!(n+2)! \Gamma ^2(\frac{1}{2})}\right] ^{1/2},\end{aligned}$$
(21)
$$\begin{aligned} A_4(t)&= \vert \xi \vert ^4(1 - \vert \xi \vert ^2)^{1/2}\sum _{n=0}^{\infty }\vert \xi \vert ^{2n}\nonumber \\&\quad \times \Bigg [\cos \left(\sqrt{n^2+n+1}\tau \right) \nonumber \\&\quad \times \cos \left(\sqrt{(n+4)^2+(n+4)+1}\tau \right)\nonumber \\&\quad + \{(n+5)(n+6) + (n-1)n\}\nonumber \\&\quad \times \frac{\sin\left (\sqrt{n^2+n+1}\tau \right)}{2\sqrt{ n^2+n+1}} \nonumber \\&\quad \times \frac{\sin \left(\sqrt{(n+4)^2+(n+4)+1}\tau \right)}{\sqrt{(n+4)^2+(n+4)+1}}\Bigg ] \nonumber \\&\quad \times \sqrt{(n+1)(n+2)(n+3)(n+4)}\nonumber \\&\quad \times \left[ \frac{\Gamma (n+\frac{1}{2})\Gamma (n+\frac{9}{2})}{n!(n+4)! \Gamma ^2(\frac{1}{2})} \right] ^{1/2}, \end{aligned}$$
(22)
$$\begin{aligned} B_{1}(t)&= \sum _{n=0}^{\infty }P_n\Bigg [\cos ^2\left(\sqrt{n^2+n+1}\tau \right)n(n-1) \nonumber \\&\quad + n\{(n+1)^2(n+2) + (n-1)^2(n-2)\}\nonumber \\&\quad \times \frac{\sin ^2\left(\sqrt{n^2+n+1}\tau \right)}{2(n^2+n+1)}\Bigg ],\end{aligned}$$
(23)
$$\begin{aligned} B_{2}(t)&= \sum _{n=0}^{\infty }P_n\Bigg [\cos ^2\left(\sqrt{n^2+n+1}\tau \right)\nonumber \\&\quad \times (n+1)(n+2)\nonumber \\&\quad + \{(n+1)(n+2)(n+3)(n+4)\nonumber \\&\quad + n^2(n-1)^2\} \frac{\sin ^2\left(\sqrt{n^2+n+1}\tau \right)}{2(n^2+n+1)}\Bigg ] \end{aligned}$$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enaki, N.A., Koroli, V.I., Bazgan, S. et al. Higher-order squeezing oscillations in Jaynes–Cummings model of a pair of cold atoms. Indian J Phys 89, 883–888 (2015). https://doi.org/10.1007/s12648-015-0658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0658-z

Keywords

PACS Nos.

Navigation