Skip to main content
Log in

A screw model for quantum electrodynamics: from gravitation to quanta

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A screw model is developed for photons and fermions to offer a physical representation for the Feynman’s arrow scheme in quantum-electrodynamics. This model interprets intrinsic parameters of particles: spin, rest energy and magnetic moment by self-rotations with the speed of light forming either a helical (boson) or a spherical (fermion) screws. Due to the extreme Lorentz contraction, the surface of screws is zero, while the radius remains finite (Compton radius). According to the general theory of relativity, the non-Euclidean geometry of space–time caused by the self-rotation of particles should produce an intrinsic force, which is analogous to the gravitation, but being 32–42 orders of magnitudes stronger, we denote it as strong gravitation. It is a self-stabilizing force for the intrinsic rotations, which is the source of spin and defines the Planck constant. The spherical screws of fermions are formed by double rotations, where the two rotations have right or left-handed chirality representing the particles and anti-particles. The double-rotation produces Coriolis force, where the sign is determined by the chirality and this force is the origin of electric charge. Parity violation in the beta-decay of neutrons is related to the symmetry of reflection for the self-motion of particles. The finite radius of self-rotation may resolve also divergences in the theory of quantum-electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R P Feynman QED, The strange theory of light and matter (Princeton: Penguin books, Princeton University Press) (1985)

    Google Scholar 

  2. A Zee Quantum Field Theory in a Nutshell 2nd Ed. (Princeton: Princeton University Press) (2010)

  3. H J Bhabha Proc. Roy. Soc. A154 195 (1936)

    Article  ADS  Google Scholar 

  4. A Arbuzov, M Bigi and H Burkhardt et al. Phys. Lett. B 383 238 (1996)

    Article  ADS  Google Scholar 

  5. R P Feynman Quantum Electrodynamics New edn. (Westview Press) (1998)

  6. A O Barut and Nino Zanghi Phys. Rev. Lett. 52 2009 (1984)

  7. M Rivas J. Phys. A Math. General 36 4703 (2003)

  8. N Hothi and S Bisht Indian J. Phys. 83 339 (2009)

  9. A Einstein Annalen der Physik 49 769 (1916)

  10. K Schwarzschild Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 7 189 (1916)

    Google Scholar 

  11. P W Higgs Phys. Rev. Lett. 13 508 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  12. P A M Dirac Proc. Roy. Soc. A117 610 (1928)

    Article  ADS  Google Scholar 

  13. T D Lee and C N Yang Phys. Rev. 104 822 (1956)

    Article  ADS  Google Scholar 

  14. L Foldy and S A Wouthuysen Phys. Rev. 78 29 (1950)

    Article  ADS  MATH  Google Scholar 

  15. H Bethe Ann. Physik 395 133 (1929)

    Article  ADS  Google Scholar 

  16. L K Gordon Modern Elementary Particle Physics (Perseus Books) (1987)

  17. G Joos and I M Freeman Theoretical Physics (New York: Courier Dover Publication) (1986)

    Google Scholar 

  18. C M Sommerfeld Phys. Rev. 107 328 (1957)

    Article  ADS  Google Scholar 

  19. G Gabrielse, D Hanneke, T. Kinoshita, M Nio and B Odom Phys. Rev. Lett. 97 030802 (2006)

    Article  ADS  Google Scholar 

  20. R P Feynman, R B Leighton and M Sands The Feynman Lectures on Physics (Addison-Wesley Publishing, Massachusetts) Vol. 2 (1964)

  21. R P Feynman Phys. Rev. 74 1430 (1948)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. M H MacGregor Foundations Phys. Lett. 2 577 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rockenbauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rockenbauer, A. A screw model for quantum electrodynamics: from gravitation to quanta. Indian J Phys 89, 389–396 (2015). https://doi.org/10.1007/s12648-014-0598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0598-z

Keywords

PACS Nos.

Navigation