Skip to main content
Log in

Aberrant CpG Methylation Mediates Abnormal Transcription of MAO-A Induced by Acute and Chronic l-3,4-Dihydroxyphenylalanine Administration in SH-SY5Y Neuronal Cells

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

l-3,4-dihydroxyphenylalanine (l-dopa) remains the most effective drug for therapy of Parkinson’s disease (PD); however, long-term use of it causes serious side effects. l-dopa-induced dyskinesia (LID) has consistently been related to l-dopa-derived excessive dopamine release, but the mechanisms have not been addressed very clear. Monoamine oxidase A (MAO-A) is one of the key enzymes in dopamine metabolism and therefore may be involved in l-dopa-induced side effects. And, epigenetic modification controls MAO-A gene transcription. To investigate the effects of l-dopa on MAO-A transcription and its underlying epigenetic mechanism, neuronal SH-SY5Y cells were treated with l-dopa for 24 h (acute) and for 7–21 days (chronic). Results showed that chronic l-dopa administration resulted in a dose-dependent and time-dependent downregulation of MAO-A, whereas acute l-dopa administration induced upregulation of MAO-A transcription and expression. Meanwhile, chronic l-dopa exposure induced CpG hypermethylation in MAO-A promoter, while acute l-dopa administration caused CpG hypomethylation. And, CpG demethylation resulted in reactivation of MAO-A transcription. These results indicated that aberrant CpG methylation might play a key role in MAO-A transcriptional misregulation in l-dopa administration. In addition, results showed that acute l-dopa administration induced downregulation of DNA methyltransferase 3a (DNMT3a). Transcription of ten-eleven translocation 1 (TET1) were significantly downregulated in chronic l-dopa administration. These data indicated that in chronic l-dopa administration, TET1 downregulation might mediate CpG hypermethylation, which is responsible for the downregulation of MAO-A transcription. In contrast, in acute l-dopa administration, DNMT3a downregulation might mediate hypomethylation, contributing to the MAO-A upregulation. In conclusion, our findings suggested that TET1 and DNMTs might mediate aberrant CpG methylation, associated with the misregulation of MAO-A in l-dopa administration, which might contribute to dopamine release abnormally leading to the side effects of l-dopa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott A (2010) Levodopa: the story so far. Nature 466:S6–S7

    Article  CAS  PubMed  Google Scholar 

  • Alzghoul L, Bortolato M, Delis F et al (2012) Altered cerebellar organization and function in monoamine oxidase a hypomorphic mice. Neuropharmacology 63:1208–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ammal Kaidery N, Tarannum S, Thomas B (2013) Epigenetic landscape of Parkinson’s disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics 10:698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black KJ, Hershey T, Hartlein JM et al (2005) Levodopa challenge neuroimaging of levodopa-related mood fluctuations in Parkinson’s disease. Neuropsychopharmacol 30:590–601

    Article  CAS  Google Scholar 

  • Bottiglieri T, Arning E, Wasek B et al (2012) Acute administration of l-DOPA induces changes in methylation metabolites, reduced protein phosphatase 2A methylation, and hyperphosphorylation of tau protein in mouse brain. J Neurosci 32:9173–9181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brannan T, Prikhojan A, Martínez-Tica J et al (1995) In vivo comparison of the effects of inhibition of MAO-A versus MAO-B on striatal l-DOPA and dopamine metabolism. J Neural Transm Park Dis Dement Sect 10:79–89

    Article  CAS  PubMed  Google Scholar 

  • Butcher SP, Fairbrother IS, Kelly JS (1990) Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J Neurochem 55:981–988

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Di Filippo M, Ghiglieri V et al (2010) Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol 9:1106–1117

    Article  CAS  PubMed  Google Scholar 

  • Carta M, Bezard E (2011) Contribution of pre-synaptic mechanisms to l-DOPA-induced dyskinesia. Neuroscience 198:245–251

    Article  CAS  PubMed  Google Scholar 

  • Cenci MA (2007) Dopamine dysregulation of movement control in l-DOPA-induced dyskinesia. Trends Neurosci 30:236–243

    Article  CAS  PubMed  Google Scholar 

  • Cenci MA (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Cenci MA, Lindgren HS (2007) Advances in understanding l-DOPA-induced dyskinesia. Curr Opin Neurobiol 17:665–671

    Article  CAS  PubMed  Google Scholar 

  • Cenci MA, Lundblad M (2006) Post- versus presynaptic plasticity in l-DOPA-induced dyskinesia. J Neurochem 99:381–392

    Article  CAS  PubMed  Google Scholar 

  • Chase TN (1998) Levodopa therapy: consequences of the nonphysiologic replacement of dopamine. Neurology 50:S17–S25

    Article  CAS  PubMed  Google Scholar 

  • Checknita D, Maussion G, Labonté B et al (2015) Monoamine oxidase a gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder. Br J Psychiatry 206:216–222

    Article  CAS  PubMed  Google Scholar 

  • Collins GG, Pryse-Davies J, Sandler M et al (1970) Effect of pretreatment with oestradiol, progesterone and DOPA on monoamine oxidase activity in the rat. Nature 226:642–643

    Article  CAS  PubMed  Google Scholar 

  • De Zutter GS, Davis RJ (2001) Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc Natl Acad Sci U S A 98:6168–6173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dethy S, Laute MA, Van Blercom N et al (1997) Microdialysis-HPLC for plasma levodopa and metabolites monitoring in parkinsonian patients. Clin Chem 43:740–744

    CAS  PubMed  Google Scholar 

  • Di Monte DA, DeLanney LE, Irwin I et al (1996) Monoamine oxidase-dependent metabolism of dopamine in the striatum and substantia nigra of l-DOPA-treated monkeys. Brain Res 738:53–59

    Article  CAS  PubMed  Google Scholar 

  • Domschke K, Tidow N, Schwarte K et al (2015) Pharmacoepigenetics of depression: no major influence of MAO-A DNA methylation on treatment response. J Neural Transm 122:99–108

    Article  CAS  PubMed  Google Scholar 

  • Duncan J, Johnson S, Ou XM (2012) Monoamine oxidases in major depressive disorder and alcoholism. Drug Discov Ther 6:112–122

    CAS  PubMed  Google Scholar 

  • Finberg JP, Wang J, Goldstein DS et al (1995) Influence of selective inhibition of monoamine oxidase a or B on striatal metabolism of l-DOPA in hemiparkinsonian rats. J Neurochem 65:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Garrett MC, Soares-da-Silva P (1990) Role of type A and B monoamine oxidase on the formation of 3,4-dihydroxyphenylacetic acid (DOPAC) in tissues from the brain of the rat. Neuropharmacology 29:875–879

    Article  CAS  PubMed  Google Scholar 

  • Gaweska H, Fitzpatrick PF (2011) Structures and mechanism of the monoamine oxidase family. Biomol Concepts 2:365–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu X, Sun J, Li S et al (2013) Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Abeta production. Neurobiol Aging 34:1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Guo JU, Su Y, Zhong C et al (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Khan AA, Sasi BK et al (2015) Molecular mechanism of monoamine oxidase a gene regulation under inflammation and ischemia-like conditions: key roles of the transcription factors GATA2, Sp1 and TBP. J Neurochem 134:21–38

    Article  CAS  PubMed  Google Scholar 

  • Hauser RA, Ellenbogen AL, Metman LV et al (2011) Crossover comparison of IPX066 and a standard levodopa formulation in advanced Parkinson’s disease. Mov Disord 26:2246–2252

    Article  PubMed  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  CAS  PubMed  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  PubMed  Google Scholar 

  • Huot P, Johnston TH, Koprich JB et al (2012) l-DOPA pharmacokinetics in the MPTP-lesioned macaque model of Parkinson’s disease. Neuropharmacology 63:829–836

    Article  CAS  PubMed  Google Scholar 

  • Inaba-Hasegawa K, Akao Y, Maruyama W et al (2013) Rasagiline and selegiline, inhibitors of type B monoamine oxidase, induce type a monoamine oxidase in human SH-SY5Y cells. J Neural Transm (Vienna) 120:435–444

    Article  CAS  Google Scholar 

  • Isobe C, Abe T, Terayama Y (2010) l-dopa therapy increases homocysteine concentration in cerebrospinal fluid from patients with Parkinson’s disease. J Clin Neurosci 17:717–721

    Article  CAS  PubMed  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (2008) Molecular mechanisms of l-DOPA-induced dyskinesia. Nat Rev Neurosci 9:665–677

    Article  CAS  PubMed  Google Scholar 

  • Jin C, Lu Y, Jelinek J et al (2014) TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. Nucleic Acids Res 42:6956–6971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulisevsky J, Pascual-Sedano B, Barbanoj M et al (2007) Acute effects of immediate and controlled-release levodopa on mood in Parkinson’s disease: a double-blind study. Mov Disord 22:62–67

    Article  PubMed  Google Scholar 

  • Lancaster J, Sawyer PR, Shepherd DM et al (1973) Effect of chronic l-DOPA administration of catecholamine metabolism in the rat. Br J Pharmacol 47:838–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wylie RC, Andrews LG et al (2003) Aging, cancer and nutrition: the DNA methylation connection. Mech Ageing Dev 124:989–998

    Article  CAS  PubMed  Google Scholar 

  • Lorsbach RB, Moore J, Mathew S et al (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–641

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Qiu X, Hu N et al (2006) Epigenetics, disease, and therapeutic interventions. Ageing Res Rev 5:449–467

    Article  CAS  PubMed  Google Scholar 

  • Lyles GA (1978) Effects of l-DOPA administration upon monoamine oxidase activity in rat tissues. Life Sci 22:603–609

    Article  CAS  PubMed  Google Scholar 

  • Managò F, Espinoza S, Salahpour A et al (2012) The role of GRK6 in animal models of Parkinson’s disease and l-DOPA treatment. Sci Rep 2:301

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer JH, Ginovart N, Boovariwala A et al (2006) Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    Article  CAS  PubMed  Google Scholar 

  • Miller JW, Shukitt-Hale B, Villalobos-Molina R et al (1997) Effect of l-dopa and the catechol-O-methyltransferase inhibitor Ro 41-0960 on sulfur amino acid metabolites in rats. Clin Neuropharmacol 20:55–66

    Article  CAS  PubMed  Google Scholar 

  • Miller RL, James-Kracke M, Sun GY et al (2009) Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem Res 34:55–65

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Riederer P, Maruyama W (2016) Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type a MAO expression. J Neural Transm (Vienna) 123:91–106

    Article  CAS  Google Scholar 

  • Ndlovu BC, Daniels WM, Mabandla MV (2016) Amelioration of l-dopa-associated dyskinesias with Triterpenoic acid in a parkinsonian rat model. Neurotox Res 29:126–134

    Article  CAS  PubMed  Google Scholar 

  • Ogasahara S, Nishikawa Y, Takahashi M et al (1984) Dopamine metabolism in the central nervous system after discontinuation of l-dopa therapy in patients with Parkinson disease. J Neurol Sci 66:151–163

    Article  CAS  PubMed  Google Scholar 

  • Pinder RM (2008) Drugs for Parkinson’s disease: levodopa is still the gold standard. Neuropsychiatr Dis Treat 4:i–ii

    PubMed  PubMed Central  Google Scholar 

  • Pizzinat N, Marchal-Victorion S, Maurel A et al (2003) Substrate-dependent regulation of MAO-A in rat mesangial cells: involvement of dopamine D2-like receptors. Am J Physiol Renal Physiol 284:F167–F174

    Article  CAS  PubMed  Google Scholar 

  • Porras G, De Deurwaerdere P, Li Q et al (2014) l-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Sci Rep 4:3730

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  PubMed  Google Scholar 

  • Robottom BJ (2011) Efficacy, safety, and patient preference of monoamine oxidase B inhibitors in the treatment of Parkinson’s disease. Patient Prefer Adher 5:57–64

    Article  Google Scholar 

  • Rudenko A, Dawlaty MM, Seo J et al (2013) Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79:1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabens EA, Distler AM, Mieyal JJ (2010) Levodopa deactivates enzymes that regulate thiol-disulfide homeostasis and promotes neuronal cell death: implications for therapy of Parkinson’s disease. Biochemistry 49:2715–2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scortegagna M, Ding K, Oktay Y (2003) Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat Genet 35:331–340

  • Shih JC, Chen K (2004) Regulation of MAO-A and MAO-B gene expression. Curr Med Chem 11:1995–2005

    Article  CAS  PubMed  Google Scholar 

  • Shih JC, Wu JB, Chen K (2011) Transcriptional regulation and multiple functions of MAO genes. J Neural Transm (Vienna) 118:979–986

    Article  CAS  Google Scholar 

  • Shumay E, Logan J, Volkow ND et al (2012) Evidence that the methylation state of the monoamine oxidase a (MAOA) gene predicts brain activity of MAO a enzyme in healthy men. Epigenetics 7:1151–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tipton KF, Boyce S, O’Sullivan J et al (2004) Monoamine oxidases: certainties and uncertainties. Curr Med Chem 11:1965–1982

    Article  CAS  PubMed  Google Scholar 

  • Wachtel SR, Abercrombie ED (1994) l-3,4-dihydroxyphenylalanine-induced dopamine release in the striatum of intact and 6-hydroxydopamine-treated rats: differential effects of monoamine oxidase A and B inhibitors. J Neurochem 63:108–117

    Article  CAS  PubMed  Google Scholar 

  • Walkinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by l-DOPA. Implications for the treatment of Parkinson’s disease J Clin Invest 95:2458–2464

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Li R et al (2013) A DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine, exacerbates neurotoxicity and upregulates Parkinson’s disease-related genes in dopaminergic neurons. CNS Neurosci Ther 19:183–190

    Article  CAS  PubMed  Google Scholar 

  • Yáñez M, Viña D (2013) Dual inhibitors of monoamine oxidase and cholinesterase for the treatment of Alzheimer disease. Curr Top Med Chem 13:1692–1706

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of the China-973 Project (2011CB504100 and 2006CB500700), the Natural Science Foundation of Beijing Municipality (7082008), and the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (IDHT20140514). We thank Professor Quangen Zhang in Capital Medical University for kindly gifting antibody of DNMT1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Wang or Xiaomin Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Figure 1

Effects of chronic l-dopa administration on cell viability of human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with l-dopa (0 μM, 2 μM and 20 μM) for 7 d, 14 d and 21 d. Cell viability was measured by cell counting with Trypan Blue staining. l-dopa at 20 μM induced significantly decreased cell viability, compared to control. The values represent the means ± SEM (n = 4). ***P < 0.001 vs. ctr. ctr: control; L2: 2 μM of l-dopa; L20: 20 μM of l-dopa. (GIF 45 kb)

High Resolution Image (TIFF 1053 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wang, X., Yang, J. et al. Aberrant CpG Methylation Mediates Abnormal Transcription of MAO-A Induced by Acute and Chronic l-3,4-Dihydroxyphenylalanine Administration in SH-SY5Y Neuronal Cells. Neurotox Res 31, 334–347 (2017). https://doi.org/10.1007/s12640-016-9686-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9686-5

Keywords

Navigation