Skip to main content

Advertisement

Log in

Developmental Exposure to Cocaine Dynamically Dysregulates Cortical Arc/Arg3.1 Modulation in Response to a Challenge

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

During adolescence, the medial prefrontal cortex (mPFC) is still developing. We have previously shown that developmental cocaine exposure alters mPFC’s ability to cope with challenging events. In this manuscript, we exposed rats developmentally treated with cocaine to a novelty task and analyzed the molecular changes of mPFC. Rats were exposed to cocaine from post-natal day (PND) 28 to PND 42 and sacrificed at PND 43, immediately after the novel object recognition (NOR) test. Cocaine-treated rats spent more time exploring the novel object than saline-treated counterparts, suggesting an increased response to novelty. The messenger RNA (mRNA) and protein levels of the immediate early gene Arc/Arg3.1 were reduced in both infralimbic (IL) and prelimbic (PL) cortices highlighting a baseline reduction of mPFC neuronal activity as a consequence of developmental exposure to cocaine. Intriguingly, significant molecular changes were observed in the IL, but not PL, cortex in response to the combination of cocaine exposure and test such as a marked upregulation of both Arc/Arg3.1 mRNA and protein levels only in cocaine-treated rats. As for proteins, such increase was observed only in the post-synaptic density and not in the whole homogenate, suggesting psychostimulant-induced changes in trafficking of Arc/Arg3.1 or an increased local translation. Notably, the same profile of Arc/Arg3.1 was observed for post-synaptic density (PSD)-95 leading to the possibility that Arc/Arg3.1 and PSD-95 bridge together to promote aberrant synaptic connectivity in IL cortex following repeated exposure to cocaine during brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc 1(3):1306–1311

    Article  PubMed  Google Scholar 

  • Bolla KI, Eldreth DA, London ED, Kiehl KA et al (2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. NeuroImage 19(3):1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179(2):219–228

    Article  PubMed  Google Scholar 

  • Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28(46):11760–11767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero A, Granberg R, Tseng KY (2016) Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 70:4–12

    Article  PubMed  Google Scholar 

  • Caffino L, Calabrese F, Giannotti G, Barbon A et al (2015a) Stress rapidly dysregulates the glutamatergic synapse in the prefrontal cortex of cocaine-withdrawn adolescent rats. Addict Biol 20(1):158–169

    Article  CAS  PubMed  Google Scholar 

  • Caffino L, Di Chio M, Giannotti G, Venniro M et al (2016) The modulation of BDNF expression and signalling dissects the antidepressant from the reinforcing properties of ketamine: effects of single infusion vs. chronic self-administration in rats. Pharmacol Res 104:22–30

    Article  CAS  PubMed  Google Scholar 

  • Caffino L, Giannotti G, Malpighi C, Racagni G et al (2014) Long-term abstinence from developmental cocaine exposure alters Arc/Arg3.1 modulation in the rat medial prefrontal cortex. Neurotox Res 26(3):299–306

    Article  CAS  PubMed  Google Scholar 

  • Caffino L, Giannotti G, Malpighi C, Racagni G et al (2015b) Short-term withdrawal from developmental exposure to cocaine activates the glucocorticoid receptor and alters spine dynamics. Eur Neuropsychopharmacol 25(10):1832–1841

    Article  CAS  PubMed  Google Scholar 

  • Caffino L, Racagni G, Fumagalli F (2011) Stress and cocaine interact to modulate Arc/Arg3.1 expression in rat brain. Psychopharmacology 218(1):241–248

    Article  CAS  PubMed  Google Scholar 

  • Casey BJ, Getz S, Galvan A (2008) The adolescent brain. Dev Rev 28(1):62–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman RH, Stern JM (1978) Maternal stress and pituitary-adrenal manipulations during pregnancy in rats: effects on morphology and sexual behavior of male offspring. J Comp Physiol Psychol 92(6):1074–1083

    Article  CAS  PubMed  Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SE, Lopian D et al (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146(1–2):105–119

    Article  CAS  PubMed  Google Scholar 

  • Colzato LS, Huizinga M, Hommel B (2009) Recreational cocaine polydrug use impairs cognitive flexibility but not working memory. Psychopharmacology 207(2):225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalley JW, Laane K, Pena Y, Theobald DE et al (2005) Attentional and motivational deficits in rats withdrawn from intravenous self-administration of cocaine or heroin. Psychopharmacology 182(4):579–587

    Article  CAS  PubMed  Google Scholar 

  • DePoy LM, Gourley SL (2015) Synaptic cytoskeletal plasticity in the prefrontal cortex following psychostimulant exposure. Traffic 16(9):919–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst M, Romeo RD, Andersen SL (2009) Neurobiology of the development of motivated behaviors in adolescence: a window into a neural systems model. Pharmacol Biochem Behav 93(3):199–211

    Article  CAS  PubMed  Google Scholar 

  • Farris S, Lewandowski G, Cox CD, Steward O (2014) Selective localization of arc mRNA in dendrites involves activity- and translation-dependent mRNA degradation. J Neurosci 34(13):4481–4493

    Article  PubMed  PubMed Central  Google Scholar 

  • Fumagalli F, Bedogni F, Frasca A, Di Pasquale L et al (2006) Corticostriatal up-regulation of activity-regulated cytoskeletal-associated protein expression after repeated exposure to cocaine. Mol Pharmacol 70(5):1726–1734

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli F, Caffino L, Racagni G, Riva MA (2009) Repeated stress prevents cocaine-induced activation of BDNF signaling in rat prefrontal cortex. Eur Neuropsychopharmacol 19(6):402–408

  • Fumagalli F, Moro F, Caffino L, Orru A et al (2013) Region-specific effects on BDNF expression after contingent or non-contingent cocaine i.v. self-administration in rats. Int J Neuropsychopharmacol 16(4):913–918

    Article  CAS  PubMed  Google Scholar 

  • Garavan H, Hester R (2007) The role of cognitive control in cocaine dependence. Neuropsychol Rev 17(3):337–345

    Article  PubMed  Google Scholar 

  • Giannotti G, Caffino L, Calabrese F, Racagni G et al (2013) Dynamic modulation of basic fibroblast growth factor (FGF-2) expression in the rat brain following repeated exposure to cocaine during adolescence. Psychopharmacology 225(3):553–560

    Article  CAS  PubMed  Google Scholar 

  • Giannotti G, Caffino L, Calabrese F, Racagni G et al (2014) Prolonged abstinence from developmental cocaine exposure dysregulates BDNF and its signaling network in the medial prefrontal cortex of adult rats. Int J Neuropsychopharmacol 17(4):625–634

    Article  CAS  PubMed  Google Scholar 

  • Giannotti G, Caffino L, Malpighi C, Melfi S et al (2015) A single exposure to cocaine during development elicits regionally-selective changes in basal basic fibroblast growth factor (FGF-2) gene expression and alters the trophic response to a second injection. Psychopharmacology 232(4):713–719

    Article  CAS  PubMed  Google Scholar 

  • Hearing MC, Miller SW, See RE, McGinty JF (2008) Relapse to cocaine seeking increases activity-regulated gene expression differentially in the prefrontal cortex of abstinent rats. Psychopharmacology 198(1):77–91

    Article  CAS  PubMed  Google Scholar 

  • Hearing MC, Schwendt M, McGinty JF (2011) Suppression of activity-regulated cytoskeleton-associated gene expression in the dorsal striatum attenuates extinction of cocaine-seeking. Int J Neuropsychopharmacol 14(6):784–795

    Article  CAS  PubMed  Google Scholar 

  • Hester R, Garavan H (2009) Neural mechanisms underlying drug-related cue distraction in active cocaine users. Pharmacol Biochem Behav 93(3):270–277

    Article  CAS  PubMed  Google Scholar 

  • Hosking JG, Cocker PJ, Winstanley CA (2016) Prefrontal cortical inactivations decrease willingness to expend cognitive effort on a rodent cost/benefit decision-making task. Cereb Cortex 26(4):1529–1538

    Article  PubMed  Google Scholar 

  • Madsen HB, Zbukvic IC, Luikinga SJ, Lawrence AJ, et al. (2016). Extinction of conditioned cues attenuates incubation of cocaine craving in adolescent and adult rats. Neurobiol Learn Mem.

  • Moorman DE, James MH, McGlinchey EM, Aston-Jones G (2015) Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 1628(Pt A):130–146

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M (1985) Microdissection of individual brain nuclei and areas. In: Boulton AA, Baker GB (eds) General neurochemical techniques. Humana Press, Totowa, NJ, pp. 1–17

    Google Scholar 

  • Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36(2):529–538

    Article  PubMed  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463

    Article  CAS  PubMed  Google Scholar 

  • Spronk DB, van Wel JH, Ramaekers JG, Verkes RJ (2013) Characterizing the cognitive effects of cocaine: a comprehensive review. Neurosci Biobehav Rev 37(8):1838–1859

    Article  CAS  PubMed  Google Scholar 

  • Torregrossa MM, Corlett PR, Taylor JR (2011) Aberrant learning and memory in addiction. Neurobiol Learn Mem 96(4):609–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Bos R, Koot S, de Visser L (2014) A rodent version of the Iowa Gambling Task: 7 years of progress. Front Psychol 5:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdejo-Garcia A, Bechara A, Recknor EC, Perez-Garcia M (2006) Executive dysfunction in substance dependent individuals during drug use and abstinence: an examination of the behavioral, cognitive and emotional correlates of addiction. J Int Neuropsychol Soc 12(3):405–415

    Article  PubMed  Google Scholar 

  • Vonmoos M, Hulka LM, Preller KH, Jenni D et al (2013) Cognitive dysfunctions in recreational and dependent cocaine users: role of attention-deficit hyperactivity disorder, craving and early age at onset. Br J Psychiatry 203(1):35–43

    Article  PubMed  Google Scholar 

  • Zavala AR, Osredkar T, Joyce JN, Neisewander JL (2008) Upregulation of Arc mRNA expression in the prefrontal cortex following cue-induced reinstatement of extinguished cocaine-seeking behavior. Synapse 62(6):421–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Zardi Gori Foundation for funding this project through a grant to FF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Fumagalli.

Ethics declarations

Procedures involving animals and their care were conducted in conformity with institutional guidelines that are in compliance with national (D.L. n. 116, G.U., supplement 40, 18 Febbraio, 1992, Circolare No. 8, G.U., 14 Luglio, 1994) and international laws and policies (EEC Council Directive 2010/63/UE; Guide for the Care and Use of Laboratory Animals, National Academies Press, 8th Edition, 2011)

Conflict of Interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caffino, L., Giannotti, G., Mottarlini, F. et al. Developmental Exposure to Cocaine Dynamically Dysregulates Cortical Arc/Arg3.1 Modulation in Response to a Challenge. Neurotox Res 31, 289–297 (2017). https://doi.org/10.1007/s12640-016-9683-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9683-8

Keywords

Navigation