Skip to main content

Advertisement

Log in

Optical, Mechanical, and Physicochemical Properties of Na2O-P2O5-SiO2 Based Tint Glass for Building Construction Applications

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This research attempts to synthesize an energy efficient and solar passive phosphosilicate based tint glass by doping with multi-metallic systems. The optimal infusion of minutely calibrated assimilation of metal oxides (Cu2O, CuO, Fe2O3 and SnO2) via conventional melt-quench-annealing route results in the formation of blue tint glass with excellent resistance in corrosive environment, and an appropriate density (~ 2.45 g/cm3). The amorphous structure of the glass even after annealing is confirmed by XRD analysis. FTIR study indicates IR vibrational bands related to the silicate matrix structural components. The metal oxide doping significantly improves the mechanical, optical and physicochemical properties of the synthesized tint glass, which has many applications in the building contractions. Optical properties of the tint glass measured by UV–Vis spectroscopy show that 28–44% visible transmittance for daylighting and 18–39% solar transmittance for heat gain into the building are achieved. The multi-metallic doping not only makes an excellent quality tint glass system that can reduce a significant amount of solar heat energy but also improves compressive strength, Young modulus and modulus of toughness. The glass also shows excellent chemical durability that suggests its applications in reducing air-conditioning loads and the cost of artificial daylighting in the modern buildings. This study leads to a pathway towards a possibility that the synthesized tint glass can be a suitable candidate for the commercial building envelope materials in certain rich daylight areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The corresponding author can offer the datasets employed and/or assessed during the current project as per reasonable request.

References

  1. Sharma M, Dalapati GK (2020) Roadmap for materials selection and energy saving coatings. In Energy Saving Coating Materials (pp 291–295). Elsevier. https://doi.org/10.1016/B978-0-12-822103-7.00013-3

  2. Samanta H, Maity R, Laha S, Talapatra PK (2019) A review on energy-efficient building. Adv Air Conditioning Refrig: Select Proc RAAR 2021:257–268. https://doi.org/10.1007/978-981-15-6360-7_23

    Article  Google Scholar 

  3. Xu K, Du M, Hao L, Mi J, Lin Y, Li S, Wang J, Deng X (2022) Optical optimization and thermal stability of SiN/Ag/SiN based transparent heat reflecting coatings. Infrared Phys Technol 122:104089. https://doi.org/10.1016/j.infrared.2022.104089

    Article  CAS  Google Scholar 

  4. Furuya K, Nakashima H, Iida Y, Takeuchi N, Nakamura M, inventors; Central Glass Co Ltd, assignee (1991) Heat-reflecting glass plate with multilayer coating. United States patent US 4, 985, 312. Jan 15

  5. Su X, Zhang X (2010) Environmental performance optimization of window–wall ratio for different window type in hot summer and cold winter zone in China based on life cycle assessment. Energy Build 42(2):198–202. https://doi.org/10.1016/j.enbuild.2009.08.015

    Article  Google Scholar 

  6. Mohelnikova JI, Altan HA (2009) Evaluation of optical and thermal properties of window glazing. Wseas Transactions on Environment and Development 86–93

  7. Kunwar N, Cetin KS, Passe U (2021) Calibration of energy simulation using optimization for buildings with dynamic shading systems. Energy Build 236:110787. https://doi.org/10.1016/j.enbuild.2021.110787

    Article  Google Scholar 

  8. Kirankumar G, Saboor S, Ashok Babu TP Effect of various external shading devices on windows for minimum heat gain and adequate daylighting into buildings of hot and dry climatic zone in India. Matec Web of Conference 144: 1–12. https://doi.org/10.1051/matecconf/201814404008

  9. Gopinathan KK (2017) Solar radiation models-a comparative study. Int Energy J 10(2)

  10. Parishwad GV, Prasad CH, Bhardwaj RK, Nema VK (2007) Estimation of cooling load for India. Int Energy J 1(1)

  11. Chaiyapinunt S, Khamporn N (2009) Selecting glass window with film for buildings in a hot climate. Eng J 13(1):29–42. https://doi.org/10.4186/ej.2009.13.1.29

    Article  Google Scholar 

  12. Kondrashov VI, Polkan GA, Gorina IN, Bondareva LN, Zverev YuV (2000) Heat-absorbing glass: directions of synthesis. Sci Glass Prod 57:3–4. https://doi.org/10.1023/A:1017394028944

    Article  CAS  Google Scholar 

  13. Gorantla K, Shaik S, Setty AB (2018) Thermal and cost analysis of float and various tinted double window glass configurations on heat gain into buildings of hot & dry climatic zone in India. 36(1):252–60. https://doi.org/10.18280/ijht.360134

  14. Kumar GK, Saboor S, Babu TA (2017) Experimental and theoretical studies of window glazing materials of green energy building in Indian climatic zones. Energy Procedia 109:306–313. https://doi.org/10.1016/j.egypro.2017.03.072

    Article  Google Scholar 

  15. Kumar GK, Babu TA (2017) Study of various glass materials to provide adequate day lighting in office buildings of warm and humid climatic zone in India. Energy Procedia 109:181–189. https://doi.org/10.1016/j.egypro.2017.03.09

    Article  Google Scholar 

  16. Abdelghany AM, El-Damrawi G, Oraby AH, Madshal MA (2018) Optical and FTIR structural studies on CoO-doped strontium phosphate glasses. J Non-Cryst Solids 499:153–158. https://doi.org/10.1016/j.jnoncrysol.2018.07.022

    Article  CAS  Google Scholar 

  17. Kolavekar SB, Ayachit NH, Rajaramakrishna R, Pramod NG, Kaewkhao J (2020) Reddish-orange emission and Judd-Ofelt investigation of Sm3+ ions doped in zince-bismuth-phospho-tellurite glasses for solid lighting application. J Lumin 226:117498. https://doi.org/10.1016/j.jlumin.2020.117498

    Article  CAS  Google Scholar 

  18. Kolavekar SB, Ayachit NH (2021) Impact of Pr2O3 on the physical and optical properties of multi-component borate glasses. Mater Chem Phys 257:123796. https://doi.org/10.1016/j.matchemphys.2020.123796

    Article  CAS  Google Scholar 

  19. Hegde V, Devarajulu G, Pramod AG, Kolavekar SB, Aloraini DA, Almuqrin AH, Sayyed MI, Jagannath G (2022) Analysis of optical and near-infrared luminescence of Er3+ and Er3+/Yb3+ Co-doped heavy metal borate glasses for optical amplifier applications. In Photonics May 18 (Vol 9, No 5, p 355). MDPI. https://doi.org/10.3390/photonics9050355

  20. Li ZG, Hui X, Zhang CM, Chen GL (2008) Formation of Mg–Cu–Zn–Y bulk metallic glasses with compressive strength over gigapascal. J Alloy Compd 454(1–2):168–173. https://doi.org/10.1016/j.jallcom.2006.12.101

    Article  CAS  Google Scholar 

  21. Jia P, Zhu ZD, Zuo XW, Wang EG, He JC (2011) Investigations of compressive strength on Cu-Hf-Al bulk metallic glasses: compositional dependence of malleability and Weibull statistics. Intermetallic 19(12):1902–1907. https://doi.org/10.1016/j.intermet.2011.07.031

    Article  CAS  Google Scholar 

  22. Si J, Mei J, Wang R, Chen X, Hui X (2016) Fe-B-Si-Zr bulk metallic glasses with ultrahigh compressive strength and excellent soft magnetic properties. Mater Lett 181:282–284. https://doi.org/10.1016/j.matlet.2016.06.052

    Article  CAS  Google Scholar 

  23. Mecherikunnel AT, Richmond J (1980) Spectral distribution of solar radiation. NASA-TM-82021.

  24. Ali A, Ershad M, Vyas VK, Hira SK, Manna PP, Singh BN, Yadav S, Srivastava P, Singh SP, Pyare R (2018) Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold. Mater Sci Eng C 93:341–355. https://doi.org/10.1016/j.msec.2018.08.003

    Article  CAS  Google Scholar 

  25. Torres-Carrasco M, Palomo JG, Puertas F (2014) Sodium silicate solutions from dissolution of glass wastes: Statistical analysis. Mater Construcc 64:314. https://doi.org/10.3989/mc.2014.05213

  26. Gorantla KK, Shaik S, Setty AB. Day lighting and thermal analysis using various double reflective window glasses for green energy buildings. Journal homepage: http://iieta.org/Journals/IJHT. 2018;36(3):1121–9. http://iieta.org/Journals/IJHT

  27. Kavas T, Kurtulus R, Mahmoud KA, Sayyed MI, Akkurt I, Gunoglu K (2021) Radiation shielding competencies for waste soda–lime–silicate glass reinforced with Ta2O5: experimental, computational, and simulation studies. Appl Phys A 127(3):1–4. https://doi.org/10.1007/s00339-021-04323-0

    Article  CAS  Google Scholar 

  28. Hussein KI, Alqahtani MS, Grelowska I, Reben M, Afifi H, Zahran H, Yaha IS, Yousef ES (2021) Optically transparent glass modified with metal oxides for X-rays and gamma rays shielding material. J Xray Sci Technol 29(2):331–345. https://doi.org/10.3233/XST-200780

    Article  CAS  PubMed  Google Scholar 

  29. Tao C, Li P, Zhang N, Yang Z, Wang Z (2019) Improvement the luminescent property of Y3Al5O12: Ce3+ by adding the different fluxing agents for white LEDs. Optik 179:632–640. https://doi.org/10.1016/j.ijleo.2018.10.169

    Article  CAS  Google Scholar 

  30. Xiao ZH, Zhou JE, Luo WY Preparation and thermal properties of P2O5 doped Li2O-Al2O3-SiO2 glass-ceramics. In Advanced Materials Research 2011 (Vol 146, pp 1574–1577). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.146-147.1574

  31. Toplis MJ, Dingwell DB (1996) The variable influence of P2O5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts. Geochim Cosmochim Acta 60(21):4107–4121. https://doi.org/10.1016/S0016-7037(96)00225-6

    Article  CAS  Google Scholar 

  32. Tarrago M, Garcia-Valles M, Martínez S, Neuville DR (2018) Phosphorus solubility in basaltic glass: Limitations for phosphorus immobilization in glass and glass-ceramics. J Environ Manage 220:54–64. https://doi.org/10.1016/j.jenvman.2018.04.079

    Article  CAS  PubMed  Google Scholar 

  33. Arbab M, Marghussian VK, Sarpoolaky H, Kord M (2007) The effect of RO oxides on microstructure and chemical durability of borosilicate glasses opacified by P2O5. Ceram Int 33(6):943–950. https://doi.org/10.1016/j.ceramint.2006.02.016

    Article  CAS  Google Scholar 

  34. Bengisu M, Brow RK, Yilmaz E, Moguš-Milanković A, Reis ST (2006) Aluminoborate and aluminoborosilicate glasses with high chemical durability and the effect of P2O5 additions on the properties. J Non-Cryst Solids 352(32–35):3668–3676. https://doi.org/10.1016/j.jnoncrysol.2006.02.118

    Article  CAS  Google Scholar 

  35. Williams KF, Johnson CE, Nikolov O, Thomas MF, Johnson JA, Greengrass J (1998) Characterization of tin at the surface of float glass. J Non-Cryst Solids 242(2–3):183–188. https://doi.org/10.1016/S0022-3093(98)00799-6

    Article  CAS  Google Scholar 

  36. He X, Shen X, Huang Q, Zhang J, He Y, Liu T, Lu A (2021) Study on the structure, fining and properties of non-alkali aluminoborosilicate glasses containing SnO2. J Non Cryst Solids 559:120670. https://doi.org/10.1016/j.jnoncrysol.2021.120670

    Article  CAS  Google Scholar 

  37. Frischat GH, Müller-Fildebrandt C, Moseler D, Heide G (2001) On the origin of the tin hump in several float glasses. J Non Cryst Solids 283(1–3):246–249. https://doi.org/10.1016/S0022-3093(01)00491-4

    Article  CAS  Google Scholar 

  38. Marzouk SY, Seoudi R, Said DA, Mabrouk MS (2013) Linear and non-linear optics and FTIR characteristics of borosilicate glasses doped with gadolinium ions. Opt Mater 35(12):2077–2084. https://doi.org/10.1016/j.optmat.2013.05.023

    Article  CAS  Google Scholar 

  39. Chen Q, Su K, Wang H, Chen Q (2018) SnO2 modified thermal, mechanical and magneto optical property improvement of PbO-Bi2O3-B2O3 glass. J Non Cryst Solids 493:20–28. https://doi.org/10.1016/j.jnoncrysol.2018.04.035

    Article  CAS  Google Scholar 

  40. Ziemath EC, Saggioro BZ, Fossa JS (2005) Physical properties of silicate glasses doped with SnO2. J Non Cryst Solids 351(52–54):3870–3878. https://doi.org/10.1016/j.jnoncrysol.2005.10.016

    Article  CAS  Google Scholar 

  41. Zhao J, Wang Y, Kang J, Qu Y, Khater GA, Li S, Shi Q, Yue Y (2019) Effect of SnO2 on the structure and chemical durability of the glass prepared by red mud. J Non Cryst Solids 509:54–59. https://doi.org/10.1016/j.jnoncrysol.2019.01.029

    Article  CAS  Google Scholar 

  42. Volotinen TT, Parker JM, Bingham PA (2008) Concentrations, and site partitioning of Fe2+ and Fe3+ ions in a soda–lime–silica glass obtained by optical absorbance spectroscopy. Phys Chem Glasses Eur J Glass Sci Technol Part B 49(5):258–270

    CAS  Google Scholar 

  43. Ram A, Prasad SN (1962) Advances in glass technology. In Technical Papers of the VI Int. Congress on Glass. Plenum New York  (p 256)

  44. Weyl WA (1951) Coloured glasses, Society of Glass Technology. Sheffield, UK (p 329)

  45. Johnston WD, Chelko A (1966) Oxidation-reduction equilibria in molten Na2O. 2SiO2 Glass in Contact with Metallic Copper and Silver. J Am Ceram Soc 49(10):562–4. https://doi.org/10.1111/j.1151-2916.1966.tb13163.x

    Article  CAS  Google Scholar 

  46. Banerjee S, Paul A (1974) Thermodynamics of the System Cu-O and Ruby Formation in Borate Glass. J Am Ceram Soc 57(7):286–290. https://doi.org/10.1111/j.1151-2916.1974.tb10902.x

    Article  CAS  Google Scholar 

  47. Dwivedi RN, Nath P (1980) Mechanism of Red Colour Formation in Photosensitive and Normal Copper-Ruby Glasses. Trans Indian Ceram Soc 39(1):23–28. https://doi.org/10.1080/0371750X.1980.10840717

    Article  CAS  Google Scholar 

  48. Singh SP, Prasad G, Nath P (1978) Kinetic Study of Cu+− Cu2+ Equilibrium in Sodium Na2O−Al2O3−B2O3 Glass. J Am Ceram Soc 61(9–10):377–379. https://doi.org/10.1111/j.1151-2916.1978.tb09340.x

    Article  CAS  Google Scholar 

  49. Singh SP, Prasad G, Nath P (1978) Absorption characteristics of cupric ion in sodium aluminoborate glass. Bull Cent Glass Ceram Res Inst Calcutta 25(2):38–42

    Google Scholar 

  50. Lakshminarayana G, Buddhudu S (2005) Spectral analysis of Cu2+: B2O3–ZnO–PbO glasses. Spectrochim Acta Part A Mol Biomol Spectrosc 62(1–3):364–371. https://doi.org/10.1016/j.saa.2005.01.014

    Article  CAS  Google Scholar 

  51. Duran A, Fernandez Navarro JM (1985) The colouring of glass by Cu2+ ions. Phys Chem Glasses 26(4):125–131

    Google Scholar 

  52. Kumar S, Nag BB (1966) Electrical properties of crystallized glasses in the system MgO-Al2O3-SiO2-TiO2. J Am Ceram Soc 49(1):10–14

    Article  CAS  Google Scholar 

  53. Bamford CR (1962) The application of the ligand field theory to colored glasses. Phys Chem Glasses 3(6):189–202

    CAS  Google Scholar 

  54. Bates T, Mackenzie JD (1962) Modern aspects of the vitreous state. Butterworth, London

    Google Scholar 

  55. Singh SP, Kumar A (1995) Molar extinction coefficients of the cupric ion in silicate glasses. J Mater Sci 30(11):2999–3004. https://doi.org/10.1007/BF00349674

    Article  CAS  Google Scholar 

  56. Bingham PA, Parker JM, Searle TM, Smith I (2007) Local structure, and medium range ordering of tetrahedrally coordinated Fe3+ ions in alkali–alkaline earth–silica glasses. J Non-Cryst Solids 353(24–25):2479–2494. https://doi.org/10.1016/j.jnoncrysol.2007.03.017

    Article  CAS  Google Scholar 

  57. Bingham PA, Parker JM, Searle T, Williams JM, Smith I (2002) Novel structural behavior of iron in alkali–alkaline-earth–silica glasses. C R Chim 5(11):787–796. https://doi.org/10.1016/S1631-0748(02)01444-3

    Article  CAS  Google Scholar 

  58. Bingham PA, Parker JM, Searle T, Williams JM, Fyles K (1999) Redox and clustering of iron in silicate glasses. J Non Cryst Solids 253(1–3):203–209. https://doi.org/10.1016/S0022-3093(99)00361-0

    Article  CAS  Google Scholar 

  59. Mysen BO, Virgo D, Neumann ER, Seifert FA (1985) Redox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO–MgO–Al2O3–SiO2–Fe–O; relationships between redox equilibria, melt structure and liquidus phase equilibria. Am Miner 70(3–4):317–331

    CAS  Google Scholar 

  60. Fox KE, Furukawa T, White WB (1982) Transition metal ions in silicate melts. Part 2. Iron in sodium silicate glasses. Phys Chem Glasses (United Kingdom). 23(5)

  61. Knight DS, White WB (1988) Ferric iron species in alkali aluminosilicate glasses during fusion. J Am Ceram Soc 71(7):C–342. https://doi.org/10.1111/j.1151-2916.1988.tb05936.x

    Article  Google Scholar 

  62. Zotov N, Yanev Y, Piriou B (2002) Time-resolved luminescence of Fe3+ and Mn2+ ions in hydrous volcanic glasses. Phys Chem Miner 29(4):291–299. https://doi.org/10.1007/s00269-001-0233-3

    Article  CAS  Google Scholar 

  63. Bilan ON, Gorbachev SM, Cherenda NG, Voropai YS, Yudin DM (1991) Iron coordination in silicate glasses. Radiat Eff Defects Solids 115(4):285–287. https://doi.org/10.1080/10420159108220574

    Article  CAS  Google Scholar 

  64. Brawer SA, White WB (1978) Structure and crystallization behaviour of Li2O-Fe2O3-SiO2 glasses. J Mater Sci 13(9):1907–1920. https://doi.org/10.1007/BF00552897

    Article  CAS  Google Scholar 

  65. Ades C, Toganidis T, Traverse JP (1990) High temperature optical spectra of soda-lime-silica glasses and modelization in view of energetic applications. J Non Cryst Solids 125(3):272–279. https://doi.org/10.1016/0022-3093(90)90858-J

    Article  CAS  Google Scholar 

  66. Steele FN, Douglas RW (1965) Some observations on the absorption of iron in silicate and borate glasses. Phys Chem Glasses 6(6):246

    CAS  Google Scholar 

  67. Holland D, Mekki A, Gee IA, McConville CF, Johnson JA, Johnson CE, Appleyard P, Thomas M (1999) The structure of sodium iron silicate glass–a multi-technique approach. J Non Cryst Solids 253(1–3):192–202. https://doi.org/10.1016/S0022-3093(99)00353-1

    Article  CAS  Google Scholar 

  68. Burkhard DM (1997) 57Fe Mössbauer spectroscopy and magnetic susceptibility of iron alkali silicate glasses. Phys Chem Glasses 38(6):317–322

    CAS  Google Scholar 

  69. Kukkadapu RK, Li H, Smith GL, Crum JD, Jeoung JS, Poisl WH, Weinberg MC (2003) Mössbauer and optical spectroscopic study of temperature and redox effects on iron local environments in a Fe-doped (0.5 mol% Fe2O3) 18Na2O–72SiO2 glass. J Non Crystal Solids 317(3):301–18. https://doi.org/10.1016/S0022-3093(02)01815-X

    Article  CAS  Google Scholar 

  70. Burns RG, Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge university press Sep 16

  71. Sayyed MI, Almuqrin AH, Mahmoud KA, Abouhaswa AS (2022) Influence of increasing SnO2 content on the mechanical, optical, and gamma-ray shielding characteristics of a lithium zinc borate glass system. Sci Rep 12(1):1–3. https://doi.org/10.1038/s41598-022-05894-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Debajyoti Mahapatra) warmly acknowledges the support of the Indian Institute of Technology (BHU), India for carrying out doctoral thesis works, and its Central Instrument Facility (CIF, IIT-BHU) for smooth conduction of materials characterizations.

Author information

Authors and Affiliations

Authors

Contributions

Debajyoti Mahapatra: Conceptualization, Methodology, Validation, and Writing – original draft

Subrata Panda: Formal analysis, Writing – review & editing

Satyendra Kumar Singh: Conceptualization, Methodology

Preetam Singh, Manas Ranjan Majhi: Supervision, Project administration

Anil Kumar: Resources, Supervision, Funding acquisition

Corresponding authors

Correspondence to Subrata Panda or Manas Ranjan Majhi.

Ethics declarations

Ethical Acceptance

Throughout this case, it is not valid.

Participation Conform

Not Applicable.

Clearance for Publications

All authors considered and accepted the final manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, D., Panda, S., Singh, S.K. et al. Optical, Mechanical, and Physicochemical Properties of Na2O-P2O5-SiO2 Based Tint Glass for Building Construction Applications. Silicon 15, 6851–6865 (2023). https://doi.org/10.1007/s12633-023-02542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02542-z

Keywords

Navigation