Skip to main content
Log in

Silicon Nanoparticles Moderated Morphometric Deficiencies by Improving Micro-Morpho-Structural Traits in Thunbergia erecta (Benth.) T. Anderson

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Thunbergia erecta (Benth.) T. Anderson (Acanthaceae) is an ornamental shrub. Viable seeds are not produced due to genetic incompatibility constraining propagation. An in vitro culture method is developed for the production of plants for the species. Surface-sterilized explants exhibited bud breaking on Murashige and Skoog (MS) medium + 2.0 mg L−1 6-benzylaminopurine (BAP). Multiple shoots (6.0 shoots/node, each measuring 3.6 cm average length) differentiated in 4 weeks of culture. Maximum (7.2 shoots/explants; each with 4.0 cm length) amplification occurred on MS medium + 1.0 mg L−1 BAP and 0.25 mg L−1 indole-3 acetic acid (IAA). Microscopic studies of foliage/leaves revealed abnormalities in stomata, trichomes, and rudimentary tissue systems on this medium. The incorporation of 2.0 mg L−1 Silicon nanoparticles (SiNPs) in the culture medium doubled the rate of shoot amplification and allowed the development of promoted leaves with well-differentiated tissue systems and functional stomatal complexes. About 98.0% of shoots produce on SiNPs-supplemented medium rooted (7.0 roots per shoot each with 4.9 cm average length) with multiple lateral roots when pulse treated with α-Naphthalene acetic acid (NAA) and transferred to soilrite® substrate in the greenhouse. The in vitro-produced plants were hardened and acclimatized on a substrate mixture of soilrite® and garden soil (1:1 w/w). We suggest the use of Silicon nanoparticles in the culture medium for rapid clonal propagation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this investigation are included in this manuscript.

The authors claim that the data and information in this article are all derived from this research, have all been indicated in the manuscript.

References

  1. Acevedo-Rodríguez P, Strong MT (2012) Catalogue of the Seed Plants of the West Indies. Smithsonian Institution, Washington, DC, USA, p 1192. http://botany.si.edu/Antilles/WestIndies/catalog.htm. Accessed 10 Mar 2023

  2. Asgari F, Majd A, Jonoubi P, Najafi F (2018) Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol Biochem 127:152–160. https://doi.org/10.1016/j.plaphy.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  3. Asmar SA, Castro EM, Pasqual M, Pereira FJ, Soares JDR (2013) Changes in leaf anatomy and photosynthesis of micropropagated banana plantlets under different silicon sources. Sci Hortic 161:328–332. https://doi.org/10.1016/j.scienta.2013.07.021

    Article  CAS  Google Scholar 

  4. Attia EA, Elhawat N (2021) Combined foliar and soil application of silica nanoparticles enhances the growth, flowering period and flower characteristics of marigold (Tagetes erecta L.). Sci Hortic 282:110015. https://doi.org/10.1016/j.scienta.2021.110015

    Article  CAS  Google Scholar 

  5. Bapat G, Zinjarde S, Tamhane V (2020) Evaluation of silica nanoparticle mediated delivery of protease inhibitor in tomato plants and its effect on insect pest Helicoverpa armigera. Colloids Surf B: Biointerfaces 193:111079. https://doi.org/10.1016/j.colsurfb.2020.111079

    Article  CAS  PubMed  Google Scholar 

  6. Borg AJ, McDade L, Schönenberger J (2008) Molecular phylogenetics and morphological evolution of Thunbergioideae (Acanthaceae). Taxon 57:811–822. https://doi.org/10.1002/tax.573012

    Article  Google Scholar 

  7. Braga FT, Nunes CF, Favero AC, Pasqual M, Carvalho JG, Castro EM (2009) Anatomical characteristics of the strawberry seedlings micropropagated using different sources of silicon. Pesqui Agropecu Bras 44:128–132. https://doi.org/10.1590/S0100-204X2009000200003

    Article  Google Scholar 

  8. Bufford JL, Daehler CC (2014) Sterility and lack of pollinator services explain reproductive failure in noninvasive ornamental plants. Diversity Distrib 20:975–985. https://doi.org/10.1111/ddi.12224

    Article  Google Scholar 

  9. Chung YS, Lee U, Heo S, Silva RR, Na C-I, Kim Y (2020) Image-based machine learning characterizes root nodule in soybean exposed to silicon. Front Plant Sci 1. https://doi.org/10.3389/fpls.2020.520161

  10. Daniel TF (1995) Acanthaceae. In: Breedlove DE (ed) Flora of Chiapas, pt. 4. California Academy of Sciences, San Francisco, USA, p 1–158

  11. Debona D, Rodrigues FA, Datnoff LE (2017) Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:85–107. https://doi.org/10.1146/annurev-phyto-080516-035312

    Article  CAS  PubMed  Google Scholar 

  12. Degrande A, Tadjo P, Takoutsing B, Asaah E, Tsobeng A, Zac Tchoundjeu Z (2013) Getting trees in to farmers’ fields: success of rural nurseries in distributing high quality planting material in cameroon. Small-Scale For 12:403–420. https://doi.org/10.1007/s11842-012-9220-4

    Article  Google Scholar 

  13. El-Helaly AA, El-Bendary HM, Abdel-Wahab AS, El-Sheikh MAK, Elnagar S (2016) The silica-nano particles treatment of squash foliage and survival and development of Spodoptera littoralis (Bosid.) larvae. J Entomol Zool Stud 4(1):175–180

    Google Scholar 

  14. Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248(1):1–18. https://doi.org/10.1007/s00425-018-2910-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Etesami H, Jeong BR (2018) Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896. https://doi.org/10.1016/j.ecoenv.2017.09.063

    Article  CAS  PubMed  Google Scholar 

  16. Gaspar T (1991) Vitrification in micropropagation. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol. 17. High-Tech and Micropropagation I. Springer, Berlin. p 117–126

  17. Gilman EF (1999) Thunbergia erecta. Fact Sheet FPS-578. University of Florida, Florida, USA.

  18. Goswami P, Mathur J, Srivastava N (2022) Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon 8(7):e09908. https://doi.org/10.1016/j.heliyon.2022.e09908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haida Z, Nakasha JJ, Hakiman M (2020) In vitro responses of plant growth factors on growth, yield, phenolics content and antioxidant activities of Clinacanthus nutans (Sabah Snake Grass). Plants (Basel) 9(8):1030. https://doi.org/10.3390/plants9081030

    Article  CAS  PubMed  Google Scholar 

  20. Haworth M, Killi D, Materassi A, Raschi A, Centritto M (2016) Impaired stomatal control is associated with reduced photosynthetic physiology in crop species grown at elevated [CO2]. Front Plant Sci 25(7):1568. https://doi.org/10.3389/fpls.2016.01568

    Article  Google Scholar 

  21. Isah T (2015) Adjustments to in vitro culture conditions and associated anomalies in plants. Acta Biol Crac Ser Bot 57(2):9–28. https://doi.org/10.1515/abcsb-2015-0026

    Article  Google Scholar 

  22. Janarthanam B, Sumathi E (2010) In vitro regeneration of Justicia gendarussa Burm. f. Libyan Agr Res Cent J Int 1:284–287

    Google Scholar 

  23. Johansen DA (1940) Plant Microtechnique. McGraw-Hill Book Co., New York

    Google Scholar 

  24. Kim SG, Kim KW, Park EW, Choi D (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathol 92:1095–1103. https://doi.org/10.1094/PHYTO.2002.92.10.1095

    Article  Google Scholar 

  25. Kovács S, Kutasy E, Csajbók J (2022) The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants 11(9):1223. https://doi.org/10.3390/plants11091223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krupa-Małkiewicz M, Calomme M (2021) Actisil application affects growth, flowering, and biochemical parameters in petunia in vitro and greenhouse. Plant Cell Tiss Organ Cult 146:449–459. https://doi.org/10.1007/s11240-021-02078-3

    Article  CAS  Google Scholar 

  27. Liang YW, Sun Y-G, Zhu P (2007) Christie. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428. https://doi.org/10.1016/j.envpol.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  28. Liu P, Yin L, Wan S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51. https://doi.org/10.1016/j.envexpbot.2014.10.006

    Article  CAS  Google Scholar 

  29. Mahmoud LM, Dutt M, Shalan AM, El-Kady ME, El-Boray MS, Shabana YM, Grosser JW (2020) Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. S Afr J Bot 132:155–163. https://doi.org/10.1016/j.sajb.2020.04.027

    Article  CAS  Google Scholar 

  30. Malinowski R (2013) Understanding of leaf development-the science of complexity. Plants (Basel) 25:396–415. https://doi.org/10.3390/plants2030396

    Article  CAS  Google Scholar 

  31. Manokari M, Priyadharshini S, Cokulraj M, Dey A, Faisal M, Alatar AA, Alok A, Shekhawat MS (2022) Amelioration of morpho-structural and physiological disorders in micropropagation of Aloe vera L. by use of an aromatic cytokinin 6-(3-hydroxybenzylamino) purine. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10672-8

  32. McMichael B, Oosterhuis D, Zak J, Beyrouty C (2010) Growth and development of root systems. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of Cotton. Springer, Dordrecht. p 57–71. https://doi.org/10.1007/978-90-481-3195-2_6

  33. Mir H, Rani R, Ahmad F, Sah AK, Prakash S, Kumar V (2019) Phenolic exudation control and establishment of in vitro strawberry (Fragaria × Ananassa) cv. Chandler Curr J Appl Sci Technol 33:1–5. https://doi.org/10.9734/CJAST/2019/v33i330071

    Article  Google Scholar 

  34. Mittal D, Kaur G, Singh P, Yadav K, Ali SA (2020) Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front Nanotechnol 2. https://doi.org/10.3389/fnano.2020.579954

  35. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  36. Mustafa SSS, Toaiema WE (2022) In vitro propagation and influence of silicon nanoparticles on growth of Thymus serpyllum. East J Agr Biol Sci 2:17–24

    Google Scholar 

  37. Parveen A, Mumtaz S, Saleem MH, Hussain I, Perveen S, Thind S (2022) Silicon and nanosilicon mediated heat stress tolerance in plants. In: Hassan E, Al Saeedi AH, Hossai M A (eds) Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement. Academic Press. p 153–159. https://doi.org/10.1016/B978-0-323-91225-9.00001-7

  38. Pawełkowicz ME, Skarzyńska A, Mróz T, Bystrzycki E, Pląder W (2021) Molecular insight into somaclonal variation phenomena from transcriptome profiling of cucumber (Cucumis sativus L.) lines. Plant Cell Tiss Organ Cult 145:239–259. https://doi.org/10.1007/s11240-020-02005-y

    Article  CAS  Google Scholar 

  39. Quiroz KA, Berríos M, Carrasco B, Retamales JB, Caligari PDS, García-Gonzáles R (2017) Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.). Biol Res 50:20. https://doi.org/10.1186/s40659-017-0125-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rajput VD, Minkina T, Feizi M, Kumari A, Khan M, Mandzhieva S, Sushkova S, El-Ramady H, Verma KK, Singh A, Hullebusch EDV, Singh RK, Jatav HS, Choudhary R (2021) Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome. Plant Stress Growth Biol 10(8):791. https://doi.org/10.3390/biology10080791

    Article  CAS  Google Scholar 

  41. Rani A, Donovan N, Mantria N (2019) Review: The future of plant pathogen diagnostics in a nursery production system. Biosens Bioelectron 145:111631. https://doi.org/10.1016/j.bios.2019.111631

    Article  CAS  PubMed  Google Scholar 

  42. Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, El-Sheery NI, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9:90. https://doi.org/10.1007/s13205-019-1626-7

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reed BM, Wada S, DeNoma J, Niedz RP (2013) Mineral nutrition influences physiological responses of pear in vitro. In Vitro Cell Dev Biol - Plant 49:699–709. https://doi.org/10.1007/s11627-013-9556-2

    Article  CAS  Google Scholar 

  44. Samiei L, DavoudiPahnehkolayi M, Tehranifar A, Karimian Z (2021) Organic and inorganic elicitors enhance in vitro regeneration of Rosa canina. J Gen Eng Biotechnol 19(1):1–7. https://doi.org/10.1186/s43141-021-00166-7

    Article  Google Scholar 

  45. Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27(1):44–63. https://doi.org/10.1105/tpc.114.133595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sekeli R, Abdullah JO, Namasivayam P, Muda P, Bakar UKA (2013) Better rooting procedure to enhance survival rate of field grown malaysian eksotika papaya transformed with 1-aminocyclopropane-1-carboxylic acid oxidase gene. Int Schol Res Not. https://doi.org/10.5402/2013/958945

    Article  Google Scholar 

  47. Shekhawat MS, Manokari M (2018) In vitro multiplication, micromorphological studies and ex vitro rooting of Hybanthus enneaspermus (L.) F. Muell.– a rare medicinal plant. Acta Bot Croat 77(1):80–87. https://doi.org/10.1515/botcro-2017-0012

    Article  CAS  Google Scholar 

  48. Shekhawat MS, Manokari M, Ravindran CP (2016) Micropropagation, micromorphological studies, and in vitro flowering in Rungia pectinata L. Scientifica (Cairo) 2016:5813851. https://doi.org/10.1155/2016/5813851

    Article  CAS  PubMed  Google Scholar 

  49. Siddiqui H, Ahmed KBM, Sami F, Hayat S (2020) Silicon nanoparticles and plants: current knowledge and future perspectives. In: Hayat S, Pichtel J, Faizan M, Fariduddin Q (eds) Sustainable Agriculture Reviews 41. Sustainable Agriculture Reviews, vol 41. Springer, Cham. p 129–142. https://doi.org/10.1007/978-3-030-33996-8_7

  50. Sivanesan I, Jeong BR (2014) Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora Bunge by altering activity of antioxidant enzyme. Sci World J. https://doi.org/10.1155/2014/521703

    Article  Google Scholar 

  51. Sivanesan I, Park SW (2014) The role of silicon in plant tissue culture. Front Plant Sci 21(5):571. https://doi.org/10.3389/fpls.2014.00571

    Article  Google Scholar 

  52. Soares JDR, Pasqual M, de Araujo AG, De Castro EM, Pereira FJ, Braga FT (2012) Leaf anatomy of orchids micropropagated with different silicon concentrations. Acta Sci Agron 34:413–421. https://doi.org/10.4025/actasciagron.v34i4.15062

    Article  CAS  Google Scholar 

  53. Souri Z, Khanna K, Karimi N, Ahmad P (2021) Silicon and plants: current knowledge and future prospects. J Plant Growth Regul 40:906–925. https://doi.org/10.1007/s00344-020-10172-7

    Article  CAS  Google Scholar 

  54. Srikun N (2017) In vitro propagation of the aromatic herb Strobilanthes tonkinensis Lindau. Agric Nat Resour 51(1):15–19. https://doi.org/10.1016/j.anres.2016.01.006

    Article  Google Scholar 

  55. Su H, Liu B, Zhang S (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4(4):616–625. https://doi.org/10.1093/mp/ssr007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sultana KW, Chandra I, Roy A (2020) Callus induction and indirect regeneration of Thunbergia coccinea Wall. Plant Physiol Rep 25:58–64. https://doi.org/10.1007/s40502-020-00501-z

    Article  CAS  Google Scholar 

  57. Sultana KW, Das S, Chandra I, Roy A (2022) Efficient micropropagation of Thunbergia coccinea Wall. and genetic homogeneity assessment through RAPD and ISSR markers. Sci Rep 12:1683. https://doi.org/10.1038/s41598-022-05787-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Teixeira da Silva JA, Nezami-Alanagh E, Barreal ME, Kher MM, Wicaksono A, Gulyás A, Hidvégi N, Magyar-Tábori K, Mendler-Drienyovszki N, Márton L, Landín M, Gallego PP, Driver JA, Dobránszki J (2020) Shoot tip necrosis of in vitro plant cultures: a reappraisal of possible causes and solutions. Planta 252(3):47. https://doi.org/10.1007/s00425-020-03449-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thakur M, Sharma V, Chauhan A (2021) Genetic fidelity assessment of long term in vitro shoot cultures and regenerated plants in Japanese plum cvs Santa Rosa and Frontier through RAPD, ISSR and SCoT markers. S Afr J Bot 140:428–433. https://doi.org/10.1016/j.sajb.2020.11.005

    Article  CAS  Google Scholar 

  60. Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81. https://doi.org/10.1016/j.plaphy.2016.06.026

    Article  CAS  PubMed  Google Scholar 

  61. Tripathi P, Subedi S, Khan AL, Chung YS, Kim Y (2021) Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants (Basel) 28 10(5):885. https://doi.org/10.3390/plants10050885

    Article  CAS  Google Scholar 

  62. Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110:433–443. https://doi.org/10.1093/aob/mcs039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu Y, Gong H (2013) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sust Dev 34:455–472. https://doi.org/10.1007/s13593-013-0194-1

    Article  CAS  Google Scholar 

  64. Ziv M (2010) Silicon effects on growth acclimatization and stress tolerance of bioreactor cultured Ornithogalum dubium plants. Acta Hort 865:29–36

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Researchers Supporting Project (Number RSP-2023R86), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Manokari M, Mahipal S Shekhawat, Mohammad Faisal, Abdulrahman A. Alatar, and Abijit Dey: Conceptualization, investigation, methodology. Cokul Raj M: Data compilation, genetic fidelity analysis, and hardening of the plants. Mahipal S Shekhawat, Manokari M, Mohammad Faisal, Rupesh Kumar Singh, and Abdulrahman A. Alatar: Writing of original draft, statistics, and revision of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Mahipal S. Shekhawat.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Compliance with Ethical Standards

No, all testing are conducted in this study as per ASTM standards.

Consent to Participate

The authors declare no objection of consent to participate.

Consent for Publication

The authors declare the no objection of consent to publication.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manokari, M., Cokul Raj, M., Dey, A. et al. Silicon Nanoparticles Moderated Morphometric Deficiencies by Improving Micro-Morpho-Structural Traits in Thunbergia erecta (Benth.) T. Anderson. Silicon 15, 5415–5427 (2023). https://doi.org/10.1007/s12633-023-02451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02451-1

Keywords

Navigation