Skip to main content

Advertisement

Log in

Beneficial Effects of Supplementation Silicon on the Plant Under Abiotic and Biotic Stress

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Unplanned agricultural practices and human activities are the main reasons for environmental damage, which consequently disturbs food production at the global level. It is also a significant threat to food security. Using silicon for alleviation of stresses in different plants has been reported in various studies. In this review, we will discuss how silicon plays an essential role in alleviating many stresses by improving plants mineral uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article its supplementary materials.

References

  1. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  2. Carmen B, Roberto D (2011) Soil bacteria support and protect plants against abiotic stresses. In: Shaner A (ed) Abiotic Stress in Plantsmechanisms and Adaptations. InTech, pp 143–170

  3. Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance, transgenic crop plants. Springer, Berlin, pp 67–132

  4. Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK (2017) Abiotic stress responses and microbe mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  5. Etesami H, Jeong BR (2018) Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896

    Article  CAS  PubMed  Google Scholar 

  6. Niwas R, Khichar ML (2016) Managing impact of climatic vagaries on the productivity of wheat and mustard in India. Mausam 67:205–222

    Article  Google Scholar 

  7. Korres NE, Norsworthy JK, Burgos NR, O osterhuis DM (2017) Temperature and drought impacts on rice production: An agronomic perspective regarding short- and long-term adaptation measures. Water Resour Rural Dev 9:12–27

    Article  Google Scholar 

  8. Li E, Zhao J, Pullens WM, Yang J (2022) The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China. Sci Total Environ 812:152461

    Article  CAS  PubMed  Google Scholar 

  9. Rasool S, Hameed A, Azooz M, Siddiqi T, Ahmad P (2013) Salt stress: Causes, types and responses of plants, ecophysiology and responses of plants under salt stress. Springer, Berlin, pp 1–24

  10. Bodner G, Nakhforoosh A, Kaul H-P (2015) Management of crop water under drought: a review. Agron Sustain Dev 35:401–442

    Article  Google Scholar 

  11. Etesami H (2017) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191

    Article  PubMed  Google Scholar 

  12. Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Acquaah G (2007) Principles of plant genetics and breeding. Blackwell, Oxford

    Google Scholar 

  14. Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions, probiotics and plant health. Springer, Berlin, pp 163–200

  15. Balakhnina TI, Matichenkov VV, Wlodarczyk T, Borkowska A, Nosalewicz M, Fomina IR (2012) Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth Regul 67:35–43

    Article  CAS  Google Scholar 

  16. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    Article  CAS  Google Scholar 

  18. Geng A, Wang XWuL, Yang H, Chen Y, Wen D, Liu X (2018) Silicon improves growth and alleviates oxidative stress in rice seedlings (Oryza sativa L.) by strengthening antioxidant defense and enhancing protein metabolism under arsanilic acid exposure. Ecotoxicol Environ Saf 158:266–273

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed M, Qadeer U, Ahmed ZI, Hassan F (2016) Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Arch Agron Soil Sci 62:299–335

    Article  CAS  Google Scholar 

  20. Alzahrania Y, Kusvuranb A, Alharbya HF, Kusvuranb S, Rady MM (2018) The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Saf 154:187–196

    Article  Google Scholar 

  21. Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo Sh (2017) Role of silicon on plant-pathogen interactions. Front Plant Sci 8:701

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pontigo S, Godoy K, Jimenez H, Gutierrez-Moraga A, Mora MDLL, Cartes P (2017) Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. Front Plant Sci 8:642

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim YH, Khan AL, Waqas M, Lee IJ (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8:510

    Article  PubMed  PubMed Central  Google Scholar 

  25. McLarnon E, McQueen-Mason S, Lenk I, Hartley SE (2017) Evidence for active uptake and deposition of Si-based defenses in tall fescue. Front Plant Sci 8:1199

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soundararajan P, Manivannan A, Park YG, Muneer S, Jeong BR (2015) Silicon alleviates salt stress by modulating antioxidant enzyme activities in Dianthus caryophyllus ‘Tula’. Hortic Environ Biotechnol 56:233–239

    Article  CAS  Google Scholar 

  27. Manivannan A, Ahn YK (2017) Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Front. Plant Sci 8:1346

    Google Scholar 

  28. Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2015) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res 22:3441–3450

    Article  CAS  Google Scholar 

  29. Haseeb M, Iqbal S, Hafeez MB, Saddiq MS, Zahra N, Raza A, Usman Lbrahim I, Iqbal J, Kamran M, Ali Q, Javed T, Ali M, Siddiqui HH (2022) Phytoremediation of nickel by quinoa: Morphological and physiological response. PLoS ONE 17:e0262309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Sohail Ahmad Khan R, Barbosa F, Zhang Ch, Chen H, Zhuang W, Varshney K (2022) Advances in “Omics” approaches for improving toxic metals/metalloids tolerance in plants. Front Plant Sci 12:794373

    Article  PubMed  PubMed Central  Google Scholar 

  31. Raza A, Charagh S, Najafi-Kakavand S, Siddiqui MH (2021) The crucial role of jasmonates in enhancing heavy metals tolerance in plants. In: Jasmonates and salicylates signaling in plants. Springer, Cham, pp 159–183

    Chapter  Google Scholar 

  32. Raza A, Habib M, Charagh S, Kakavand SN (2021) Genetic engineering of plants to tolerate toxic metals and metalloids. In: Handbook of bioremediation. Academic Press, pp 411–436

  33. Raza A, Hussain S, Javed R, Hafeez MB, Hasanuzzaman M (2021) Antioxidant defense systems and remediation of metal toxicity in plants. In: Approaches to the Remediation of Inorganic Pollutants. Springer, Singapore, pp 91–124

  34. Khan I, Awan SA, Rizwan M, Ali S, Hassan MJ, Brestic M, Zhang S, Huang L (2021) Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol Environ Safety 222:112510

    Article  CAS  PubMed  Google Scholar 

  35. Ahire ML, Mundada PS, Nikam TD, Bapat VA, Penna S (2021) Multifaceted roles of silicon in mitigating environmental stresses in plants. Plant Physiol Biochem 169:291–310

    Article  CAS  PubMed  Google Scholar 

  36. Mundada PS, Jadhav SV, Salunkhe SS, Gurme ST, Umdale SD, Barmukh R, B et al (2021) Silicon and plant responses under adverse environmental conditions. Plant perform. Under environ. Stress. Springer Nature, Cham, pp 357–385

    Book  Google Scholar 

  37. Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M (2021) Interactions of silicon with essential and beneficial elements in plants. Front. Plant Sci 12:1224

    Google Scholar 

  38. Singh S, Singh VP, Prasad SM, Sharma S, Ramawat N, Dubey NK, Kumar Tripathi D, Kumar Chauhan D (2019) Interactive effect of silicon (Si) and salicylic acid (SA) in maize seedlings and their mechanisms of cadmium (Cd) toxicity alleviation. J Plant Growth Regul 38:1587–1597

    Article  CAS  Google Scholar 

  39. Exley C (2015) A possible mechanism of biological silicification in plants. Front Plant Sci 6:853

    Article  PubMed  PubMed Central  Google Scholar 

  40. Guerriero G, Hausman J-F, Legay S (2016) Silicon and the plant extracellular matrix. Front Plant Sci 7:463

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kidd PS, Llugany M, Poschenrieder CH, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    CAS  PubMed  Google Scholar 

  42. Iwasaki K, Maier P, Fecht M, Horst WJ (2002) Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). J Plant Physiol 159:167–173

    Article  CAS  Google Scholar 

  43. Da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Poll 197:323–330

    Article  Google Scholar 

  44. Ye J, Yan C, Liu J, Lu H, Liu T, Song Z (2012) Effects of silicon on the distribution of cadmium compartmentation in root tips of Kandelia obovata (S., L) Yong. Environ Pollut 162:369–373

    Article  CAS  PubMed  Google Scholar 

  45. Keller C, Rizwan M, Davidian J-C, Pokrovsky O, Bovet N, Chaurand P, Meunier J-D (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta 241:847–860

    Article  CAS  PubMed  Google Scholar 

  46. Imtiaz M, Rizwan MS, Mushtaq MA, Ashraf M, Shahzad SM, Yousaf B, Saeed DA, Rizwan M, Nawaz MA, Mehmood S (2016) Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. J Environ Manag 183:521–529

    Article  CAS  Google Scholar 

  47. Hussain I, Ashraf MA, Rasheed R, Asghar A, Sajid MA, Iqbal M (2015) Exogenous application of silicon at the boot stage decreases accumulation of cadmium in wheat (Triticum aestivum L.) grains. Braz J Bot 38:223–234

    Article  Google Scholar 

  48. Cooke J, Leishman MR (2016) Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Funct Ecol 30:1340–1357

    Article  Google Scholar 

  49. Xie Z, Song R, Shao H, Song F, Xu H, Lu Y (2015) Silicon improves maize photosynthesis in saline-alkaline soils. Sci World J 2015:1–6. https://doi.org/10.1155/2015/245072

    Article  CAS  Google Scholar 

  50. Rastogi A, Strozecki M, Kalaji HM, Lucow D, Lamentowicz M, Juszczak R (2019) Impact of warming and reduced precipitation on photosynthetic and remote sensing properties of peatland vegetation. Environ Exp Bot 160:71–80

    Article  CAS  Google Scholar 

  51. Zhang Y, Shi Y, Gong HJ, Zhao HL, Li HL, Hu YH, Wang YCh (2018) Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. J Integr Agric 17:2151–2159

    Article  CAS  Google Scholar 

  52. Harizanova A, Koleva-Valkova L (2019) Effect of silicon on photosynthetic rate and the chlorophyll fluorescence parameters at hydroponically grown cucumber plants under salinity stress  J Cent Eur Agric 20:953–960

    Article  Google Scholar 

  53. Ashfaque F, Inam A, Inam A, Iqbal S, Sahay S (2017) Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). S Afr J Bot 111:153–160

    Article  CAS  Google Scholar 

  54. Mehrabanjoubani P, Abdolzadeh A, Sadeghipour HR, Aghdasi M (2015) Impacts of silicon nutrition on growth and nutrient status of rice plants grown under varying zinc regimes. Theor Exp Plant Physiol 27:19–29

    Article  Google Scholar 

  55. Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic 123:521–530

    Article  CAS  Google Scholar 

  56. Gu H-H, Zhan S-S, Wang S-Z, Tang Y-T, Chaney RL, Fang X-H, Cai X-D, Qiu R-L (2012) Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant Soil 350:193–204

    Article  CAS  Google Scholar 

  57. Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    Article  CAS  Google Scholar 

  58. Bityutskii NP, Yakkonen KL, Petrova A, I, Shavarda AL (2017) Interactions between aluminium, iron and silicon in Cucumber sativus L. grown under acidic conditions. J Plant Physiol 218:100–108

    Article  CAS  PubMed  Google Scholar 

  59. Verma KK, Song X-P, Tian D-D, Singh M, Verma CL, Rajput VD, Kumar Singh R, Sharma R, Singh P, Kumar Malviya M, Li Y-R (2021) Investigation of defensive role of silicon during drought stress induced by irrigation capacity in sugarcane: Physiological and biochemical characteristics. ACS Omega 6:19811–19821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Greger M, Landberg T, Vaculik M (2018) Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants 7:41

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ahanger MA, Bhat JA, Siddiqui MH, Rinklebe J, Ahmad P (2020) Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. J Exp Bot 71:6758–6774

    Article  CAS  PubMed  Google Scholar 

  62. Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M (2021) Interactions of silicon with essential and beneficial elements in plants. Front Plant Sci 12:1224

    Article  Google Scholar 

  63. Abdalla MM (2011) Impact of diatomite nutrition on two Trifolium alexandrinum cultivars differing in salinity tolerance. Int J Plant Physiol Biochem 3:233–246

    CAS  Google Scholar 

  64. Li H, Zhu Y, Hu Y, Han W, Gong H (2015) Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant 37:71

    Article  Google Scholar 

  65. Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  PubMed  Google Scholar 

  66. Naeem A, Ghafoor A, Farooq M (2015) Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars. J Sci Food Agric 95:2467–2472

    Article  CAS  PubMed  Google Scholar 

  67. Rizwan M, Meunier J-D, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209:326–334

    Article  PubMed  Google Scholar 

  68. Shim J, Shea PJ, Oh B-T (2014) Stabilization of heavy metals in mining site soil with silica extracted from corn cob. Water Air Soil Pollut 225:2152

    Article  Google Scholar 

  69. Zhang A-m, Zhao G-y, Gao T-g, Wang W, Li J, Zhang S-f, Zhu B (2013) -c Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7:41–47

  70. Mousavi SM (2022) Silicon and nano-silicon mediated heavy metal stress tolerance in plants. In: Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement. Academic Press, pp 181–191

  71. Hurtado AC, Chiconato DA, Prado RM, Sousa Junior GS, Olivera Viciedo D, Piccolo MS (2020) Silicon application induces changes C:N:P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress. Saudi J Biol Sci 12:3711–3719

    Article  Google Scholar 

  72. Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2014) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul 33:137–149

    Article  CAS  Google Scholar 

  73. Abbas T, Sattar A, Ijaz M, Aatif M, Khalid S, Sher A (2017) Exogenous silicon application alleviates salt stress in okra. Hortic Environ Biotechnol 58:342–349

    Article  CAS  Google Scholar 

  74. Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker J, Belanger HR (2019) The controversies of silicon’s role in plant biology. New Phytol 221:67–85

    Article  PubMed  Google Scholar 

  75. Abdelaal KA, A, Mazrou YSA, Hafez YM (2020) Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants 9:733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhardwaj S, Kapoor D (2021) Fascinating regulatory mechanism of silicon for alleviating drought stress in plants. Plant Physiol Biochem 166:1044–1053

    Article  CAS  PubMed  Google Scholar 

  77. Hussain I, Parveen A, Rasheed R, Ashraf MA, Ibrahim M, Riaz S, Afzaal Z, Iqbal M (2019) Exogenous silicon modulates growth, physio-chemicals and antioxidants in barley (Hordeum vulgare L.) exposed to different temperature regimes. Silicon 11:2753–2762

    Article  CAS  Google Scholar 

  78. Merewitz EB, Liu S (2019) Improvement in heat tolerance of creeping Bentgrass with melatonin, Rutin, and silicon. J Am Soc Horticult Sci 144:141–148

    Article  CAS  Google Scholar 

  79. Dragisic Maksimovic J, Mojovic M, Maksimovic V, Romheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63:2411–2420

    Article  CAS  PubMed  Google Scholar 

  80. Oliva SR, Mingorance MD, Leidi EO (2011) Effects of silicon on copper toxicity in Erica andevalensis Cabezudo and Rivera: a potential species to remediate contaminated soils. J Environ Monit 13:591–596

    Article  CAS  PubMed  Google Scholar 

  81. Chen D, Chen D, Xue R, Long J, Lin X, Lin Y, Jia L, Zeng R, Song Y (2019) Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. J Hazard Mater 367:447–455

    Article  CAS  PubMed  Google Scholar 

  82. Liu X, Yin L, Deng X, Gong D, Du S, Wang S, Zhang Z (2020) Combined application of silicon and nitric oxide jointly alleviated cadmium accumulation and toxicity in maize. J Hazard Mater 395:122679

    Article  CAS  PubMed  Google Scholar 

  83. Wang B, Chu C, Wei H, Zhang L, Ahmad Z, Wu S, Xie B (2020) Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environ Pollut 267:115411

    Article  CAS  PubMed  Google Scholar 

  84. Huang H, Rizwan M, Li M, Song F, Zhou S, He X, Ding R, Dai Z, Yuan Y, Cao M, Xiong S, Tu S (2019) Comparative efficacy of organic and inorganic silicon fertilizers on antioxidant response, Cd/Pb accumulation and health risk assessment in wheat (Triticum aestivum L.). Environ Pollut 255:113146

    Article  CAS  PubMed  Google Scholar 

  85. Huang L, Li WC, Tam NFY, Ye Z (2019) Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). J Environ Sci 75:296–306

    Article  CAS  Google Scholar 

  86. Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fan X, Wen X, Huang F, Cai Y, Cai K (2016) Effects of silicon on morphology, ultrastructure and exudates of rice root under heavy metal stress. Acta Physiol Plant 38:197

    Article  Google Scholar 

  88. Collin B, Doelsch E, Keller C, Cazevieille P, Tella M, Chaurand P, Panfili F, Hazemann JL, Meunier JD (2014) Copper distribution and speciation in bamboo exposed to a high Cu concentration and Si supplementation. First evidence on the presence of reduced copper bound to sulfur compounds in Poaceae. Environ Poll 187:22–30

    Article  CAS  Google Scholar 

  89. Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanke AU, Sonah H, Deshmukh R (2019) Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bokor B, Vaculik M, Slovakova L, Masarovic D, Lux A (2014) Silicon does not always mitigate zinc toxicity in maize. Acta Physiol Plant 36:733–743

    Article  CAS  Google Scholar 

  91. Lukacova Z, Svubova R, Kohanova J, Lux A (2013) Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regul 70:89–103

    Article  CAS  Google Scholar 

  92. Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F, Bharwana SA, Zhang G (2013) The influence of silicon on barley growth, photosynthesis and ultrastructure under chromium stress. Ecotoxicol Environ Saf 89:66–72

    Article  CAS  PubMed  Google Scholar 

  93. Song A, Li P, Fan F, Li Z, Liang Y (2014) The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE 9:e113782

    Article  PubMed  PubMed Central  Google Scholar 

  94. Abbasi GH, Akhtar J, Anwar-ul-Haq M, Malik W, Ali S, Chen Z-H, Zhang G (2015) Morpho-physiological and micrographic characterization of maize hybrids under NaCl and Cd stress. Plant Growth Regul 75:115–122

    Article  CAS  Google Scholar 

  95. Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, Ahmad M, H.Siddiqui M (2020) Silicon induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol Biochem 157:47–59

    Article  CAS  PubMed  Google Scholar 

  96. Ghorbanpour M, Mohammadi H, Kariman Kh (2020) Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environ Sci Nano 7:443–461

    Article  CAS  Google Scholar 

  97. Kuhla J, Pausch J, Schaller J (2021) Effect on soil water availability, rather than silicon uptake by plants, explains the beneficial effect of silicon on rice during drought. Plant Cell Environ 44(10):3336–3346

    Article  CAS  PubMed  Google Scholar 

  98. Etesami H, Li Z, Maathuis FJM, Cooke J (2022) The combined use of silicon and arbuscular mycorrhizas to mitigate salinity and drought stress in rice. Environ Exp Bot 201:104955

    Article  CAS  Google Scholar 

  99. Gou T, Yang L, Hu W, Chen X, Zhu Y, Guo J, Gong H (2020) Silicon improves the growth of cucumber under excess nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis. Plant Physiol Biochem 152:53–61

    Article  CAS  PubMed  Google Scholar 

  100. Zhu Y, Jiang X, Zhang J, He YaZhu X, Zhou X, Gong H, Yin J, Liu Y (2020) Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol Biochem 156:209–220

    Article  CAS  PubMed  Google Scholar 

  101. Kaloterakis N, van Delden H, Hartley S, De Deyn SB (2021) Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Sci Hortic 288:110383

    Article  CAS  Google Scholar 

  102. Mousavi SA, Roosta HR, Esmaeilizadeh M, Eshghi S (2022) Alleviating the adverse effects of salinity and alkalinity stresses on some physiological traits by selenium and silicon foliar applications on cucumber (Cucumis sativus L.) plants. J Plant Nutr 1–18

  103. AL Kahtani M, Hafez Y, Attia K, Al-Ateeq T, Ali MAM, Hasanuzzaman M, Abdelaal Kh (2021) Bacillus thuringiensis and silicon modulate antioxidant mMetabolism and improve the physiological traits to confer salt tolerance in lettuce. Plants 10:1025

  104. Lemos Neto HS, Guimaraes MA, Oliveira Mesquita R, Sousa Freitas WE, Oliveira AB, Dias NS, Gomes-Filho E (2021) Silicon supplementation induces physiological and biochemical changes that assist lettuce salinity tolerance. Silicon 13:4075–4089

    Article  CAS  Google Scholar 

  105. Elsheery NI, Helaly MN, El-Hoseiny HM, Alam-Eldein Sh M (2020) Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 10:558

    Article  CAS  Google Scholar 

  106. Badem A, Soylemez S (2022) Effects of nitric oxide and silicon application on growth and productivity of pepper under salinity stress. J King Saud Univ Sci 6:102189

    Article  Google Scholar 

  107. Costan A, Stamatakis A, Chrysargyris A, Petropoulos SA, Tzortzakis N (2020) Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf-life of fruit produced hydroponically. J Sci Food Agric 100:732–743

    Article  CAS  PubMed  Google Scholar 

  108. Hernandez-Salinas M, Valdez-Aguilar LA, Alia-Tejacal I, Alvarado-Camarillo D, Cartmill AD (2021) Silicon enhances the tolerance to moderate NaCl-salinity in tomato grown in a hydroponic recirculating system. J Plant Nutr 45:413–425

    Article  Google Scholar 

  109. Sayed EG, Mahmoud M, El-Mogy AWM, Ali M, Fahmy MAA, Tawfic MAM (2022) The effective role of nano-silicon application in improving the productivity and quality of grafted tomato grown under salinity stress. Horticulturae 8:293

    Article  Google Scholar 

  110. Fauteux F, Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6

    Article  CAS  PubMed  Google Scholar 

  111. Vivancos J, Labbe C, Menzies JG, Belanger RR (2015) Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol Plant Pathol 16:572–582

    Article  CAS  PubMed  Google Scholar 

  112. Jeer M, Telugu UM, Voleti SR, Padmakumari AP (2017) Soil application of silicon reduces yellow stem borer, Scirpophaga incertulas (Walker) damage in rice. J Appl Entomol 141:189–201

    Article  CAS  Google Scholar 

  113. Frew A, Weston LA, Reynolds OL, Gurr GM (2018) The role of silicon in plant biology: a paradigm shift in research approach. Ann Bot 121:1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Frew A, Powell JR, Sallam N, Allsopp PG, Johnson SN (2016) Trade-offs between silicon and phenolic defenses may explain enhanced performance of root herbivores on phenolic-rich plants. J Chem Ecol 42:768–771

    Article  CAS  PubMed  Google Scholar 

  115. Ryalls JMW, Hartley SE, Johnson SN (2017) Impacts of silicon-based grass defences across trophic levels under both current and future atmospheric CO2 scenarios. Biol Let 13:20160912

    Article  Google Scholar 

  116. Hartley SE, DeGabriel JL (2016) The ecology of herbivore-induced silicon defences in grasses. Funct Ecol 30:1311–1322

    Article  Google Scholar 

  117. Debona D, Rodrigues FA, Datnoff LE (2017) Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:85–107

    Article  CAS  PubMed  Google Scholar 

  118. Liang X, Wang H, Hu Y, Mao L, Sun L, Dong T, Nan W, Bi Y (2015) Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission. Plant Cell Rep 34:331–343

    Article  CAS  PubMed  Google Scholar 

  119. Fortunato AA, da Silva WL, Rodrigues FA (2013) Phenylpropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp. cubense. Phytopathology 104:597–603

    Article  Google Scholar 

  120. Singh S, Sahoo MR, Acharya GC, Jinger D, Nayak P (2022) Silicon: a potent nutrient in plant defense mechanisms against arthropods. Silicon 14:6493–6505

    Article  CAS  Google Scholar 

  121. Van Bockhaven J, Spichal L, Novak O, Strnad M, Asano T, Kikuchi S, Hofte M, Vleesschauwer DD (2015) Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol 206:761–773

    Article  PubMed  Google Scholar 

  122. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  123. Kumar S, Soukup M, Elbaum R (2017) Silicification in grasses: variation between different cell types. Front Plant Sci 8:438

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Abdel Rahman M. Tawaha.

Ethics declarations

Consent for Publication

All authors agree to publish this article in the Journal

Research Involving Human Participants and/or Animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Competing Interests

Our organization strives to maintain the highest standards of integrity, and it is vital that the public be confident of our commitment.

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanum, S., Tawaha, A.R.M., Karimirad, R. et al. Beneficial Effects of Supplementation Silicon on the Plant Under Abiotic and Biotic Stress. Silicon 15, 2481–2491 (2023). https://doi.org/10.1007/s12633-022-02209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02209-1

Keywords

Navigation