Skip to main content
Log in

Performance and Sensitivity Analysis of Polarity Controllable-Ion Sensitive FET for pH Sensing Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the current work, Polarity controllable–Ion Sensitive FET (PC-ISFET) has been proposed that can work as a pH sensor in both n- and p- modes. The approach utilizes self-consistent solution of physics-based model and TCAD simulation. The surface charge density developed at the interface of electrolyte/sensing dielectric has been modeled using Gouy-Chapman-Stern model and Site-binding theory. The sensing efficacy of the proposed sensor has been exhaustively examined in terms of transfer characteristics and various sensitivity parameters such as shift in threshold voltage, drain current, ION / IOFF and transconductance have been critically assessed. Further, the sensing performance has also been analyzed for different high-κ dielectric materials such as HfO2 and Al2O3. It has been demonstrated that HfO2 performs better than Al2O3, although, both HfO2 and Al2O3 exhibit average threshold voltage sensitivity values of 98.47 (94.02) mV/ pH and 83.75 (87.75) mV/pH respectively for n- (p-) mode which is much higher than traditional Nernst limit i.e., 59 mV/pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

The manuscript has no associated data.

Code Availability

Not applicable.

References

  1. Poghossian A (2014) Schöning M J Label-Free Sensing of Biomolecules with Field-Effect Devices for Clinical Applications. Electroanalysis 26:1197–1213. https://doi.org/10.1002/elan.201400073

    Article  CAS  Google Scholar 

  2. Singh L, Zhu G, Singh R, Zhang B, Wang W, Kaushik BK, Kumara S (2020) Gold nanoparticles and Uricase Functionalized Tapered Fiber Sensor for Uric Acid Detection. IEEE Sens J 20:219–226. https://doi.org/10.1109/JSEN.2019.2942388

    Article  CAS  Google Scholar 

  3. Singh L, Singh R, Zhang B, Cheng S, Kaushik BK, Kumara S (2019) LSPR based Uric Acid Sensor using Graphene Oxide and Gold Nanoparticles Functionalized Tapered Fiber. Opt Fiber Technol 53:102043. https://doi.org/10.1016/j.yofte.2019.102043

    Article  CAS  Google Scholar 

  4. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17:70–71. https://doi.org/10.1109/TBME.1970.4502688

    Article  CAS  PubMed  Google Scholar 

  5. Bergveld P (1972) Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology IEEE Trans. Biomed Eng 19:342–351. https://doi.org/10.1109/TBME.1972.324137

    Article  CAS  Google Scholar 

  6. Wang Y, Yang M, Wu C (2020) Design and implementation of a pH sensor for micro solution based on nanostructured ion-sensitive field-effect transistor. Sensors 20:6921. https://doi.org/10.3390/s20236921

    Article  CAS  PubMed Central  Google Scholar 

  7. Van Ha REG, Eijkel JCT, Bergveld P (1996) A general model to describe the electrostatic potential at electrolyte oxide interfaces Adv. Colloid Interface Sci 69:31–62. https://doi.org/10.1016/S0001-8686(96)00307-7

    Article  Google Scholar 

  8. Bergveld P (2016) The development and application of FET-based biosensors. Biosensors 2:15–33. https://doi.org/10.1016/0265-928X(86)85010-6

    Article  Google Scholar 

  9. Parizi KB, Xu X, Pal A, Hu X, Wong HSP (2017) ISFET pH Sensitivity: counter-ions play a key role. Sci Rep 7:41305. https://doi.org/10.1038/srep41305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heinzig A, Slesazeck S, Kreupl F, Mikolajick T, Weber WM (2011) Reconfigurable silicon nanowire transistors. Nano Lett 12:119–124. https://doi.org/10.1021/nl203094h

    Article  CAS  PubMed  Google Scholar 

  11. Heinzig A, Mikolajick T, Trommer J, Grim D, Weber WM (2013) Dually active silicon nanowire transistors and circuits with equal electron and hole transport. Nano Lett 13:4176. https://doi.org/10.1021/nl401826u

    Article  CAS  PubMed  Google Scholar 

  12. Marchi M D, Sacchetto D, Frache S, Zhang J, Gaillardon P E, Leblebici Y , Micheli G D (2012) Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs IEEE-IEDM 183. https://doi.org/10.1109/IEDM.2012.6479004

  13. Larson JM, Snyder JP (2006) Overview and status of metal S/D schottky barrier MOSFET technology. IEEE Trans Electron Devices 53:1048–1058. https://doi.org/10.1109/TED.2006.871842

    Article  CAS  Google Scholar 

  14. Ashcroft B, Takulapalli B, Yang J, Laws GM, Zhang HQ, Tao NJ, Lindsay S, Gust D, Thornton TJ (2004) Calibration of a pH sensitive buried channel silicon-on-insulator MOSFET for sensor applications. Phys Stat Sol 241:2291–2296. https://doi.org/10.1002/pssb.200404936

    Article  CAS  Google Scholar 

  15. Khanna VK (2007) pH measurement of dirty water sources by ISFET: addressing practical problems. Sensors Review 27:233–238. https://doi.org/10.1108/02602280710758183

    Article  Google Scholar 

  16. ReddyJr B, Dorvel BR, Go J, Nair PR, Elibol OH, Credo GM, Daniels JS, Chow EKC, Su X, Varma M, Alam MA, Bashir R (2011) High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing. Biomed Microdevices 13:335–344. https://doi.org/10.1007/s10544-010-9497-z

    Article  CAS  Google Scholar 

  17. Chen S, Bomer JG, Carlen ET, Berg A (2011) Al2O3/silicon nanoISFET with near ideal nernstian response. Nano Lett 11:2334–2341. https://doi.org/10.1021/nl200623n

    Article  CAS  PubMed  Google Scholar 

  18. Jang H-JJ, Cho W-JJ (2012) Fabrication of high-performance fully depleted silicon-on-insulator based dual-gate ion-sensitive field-effect transistor beyond the Nernstian limit. Appl Phys Lett 100:073701. https://doi.org/10.1063/1.3685497

    Article  CAS  Google Scholar 

  19. Abdolkader TM (2016) A numerical simulation tool for nanoscale ion-sensitive field-effect transistor. Int J Numerical Modell Electron Netw Devices Fields 29:1118–1128. https://doi.org/10.1002/jnm.2170

    Article  Google Scholar 

  20. Bandiziol A, Palestri P, Pittino F, Esseni D, Selmi L (2015) A TCAD based methodology to model the site-binding charge at ISFET/electrolyte interfaces. IEEE Trans Electron Devices 62:3379. https://doi.org/10.1109/TED.2015.2464251

    Article  CAS  Google Scholar 

  21. Mohammadi E, Manavizadeh N (2018) An Accurate TCAD-Based Model for ISFET Simulation. IEEE Trans Electron Devices 65:3950–3956. https://doi.org/10.1109/TED.2018.2857218

    Article  CAS  Google Scholar 

  22. Pittino F, Palestri P, Scarbolo P, Esseni D, Selmi L (2014) Models for the use of commercial TCAD in the analysis of silicon-based integrated biosensors. Solid-State Electron 98:63–69. https://doi.org/10.1016/j.sse.2014.04.011

    Article  CAS  Google Scholar 

  23. Choi B, Lee J, Yoon J, Ahn JH, Park TJ, Kim DM, Kim DH, Choi SJ (2015) TCAD-based simulation method for the electrolyte insulator-semiconductor field-effect transistor. IEEE Trans Electron Devices 62:1072. https://doi.org/10.1109/TED.2015.2395875

    Article  Google Scholar 

  24. Kalra S, Kumar MJ, Dhawan A (2020) Reconfigurable FET biosensor for a wide detection range and electrostatically tunable sensing response. IEEE Sensors J 20:2261–2269. https://doi.org/10.1109/JSEN.2019.2952333

    Article  CAS  Google Scholar 

  25. Saha P, Dash DK, Sarkar SK (2019) Nanowire reconfigurable FET as biosensor: Based on dielectric modulation approach. Solid-State Electron 161:107637. https://doi.org/10.1016/j.sse.2019.107637

    Article  CAS  Google Scholar 

  26. Simon M, Heinzig A, Trommer J, Baldauf T, Mikolajick T, Weber WM (2017) Top-down technology for reconfigurable nanowire FETs with symmetric on-currents. IEEE Trans Nanotechnol 16:812–819. https://doi.org/10.1109/TNANO.2017.2694969

    Article  CAS  Google Scholar 

  27. Simon M, Liang B, Fischer D, Knaut M, Than A, Mikolajick T, Weber WM (2020) Top-down fabricated reconfigurable FET with two symmetric and high-current on-states. IEEE Electron Device Lett 41:1110–1113. https://doi.org/10.1109/LED.2020.2997319

    Article  CAS  Google Scholar 

  28. ATLAS: 2-D Device Simulator, Version5.19.20.R, Silvaco, Santa Clara, CA, USA, 2014

  29. Chung I-Y, Jang H, Lee J, Moon H, Seo SM, Kim DH (2012) Simulation study on discrete charge effects of SiNW biosensors according to bound target position using a 3D TCAD simulator. Nanotechnology 23:065202. https://doi.org/10.1088/0957-4484/23/6/065202

    Article  CAS  PubMed  Google Scholar 

  30. Yates DE, Levine S, Healy TW (1974) Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc Faraday Trans 1 70:1807–1818. https://doi.org/10.1039/F19747001807

    Article  CAS  Google Scholar 

  31. Bousse L, Rooij N De, Bergveld P (1983) Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface IEEE Trans. Electron Devices 30. https://doi.org/10.1109/T-ED.1983.21284

  32. Landheer D, Aers G, McKinnon WR (2005) Model for the field effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors. J Appl Phys 98:044701. https://doi.org/10.1063/1.2008354

    Article  CAS  Google Scholar 

  33. Tarasov A, Wipf M, Stoop RL, Bedner K, Fu W, Guzenko VA, Knopfmacher O, Calame M, Schonenberger C (2012) Understanding the electrolyte background for biochemical sensing with ion-sensitive field-effect transistors. ACS Nano 6:9291–9298. https://doi.org/10.1021/nn303795r

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors (Priyanka Pandey) are thankful to the University Grants Commission, Government of India (3631/(NET-NOV (2017))) for providing necessary financial assistance during the course of research work. The authors also acknowledge Faculty Research Programme Grant – IoE (IoE/FRP/PCMS/2020/27).

Funding

The authors (Priyanka Pandey) are thankful to the University Grants Commission, Government of India (3631/(NET-NOV (2017))) for providing necessary financial assistance during the course of research work. The authors also acknowledge Faculty Research Programme Grant – IoE (IoE/FRP/PCMS/2020/27).

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed equally.

Corresponding author

Correspondence to Harsupreet Kaur.

Ethics declarations

Ethics Approval

The authors have followed the ethical standards.

Consent to Participate

All the authors have complete consent to participate.

Consent for Publication

All the authors have complete consent for publication.

Conflicts of Interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Kaur, H. Performance and Sensitivity Analysis of Polarity Controllable-Ion Sensitive FET for pH Sensing Applications. Silicon 14, 8467–8474 (2022). https://doi.org/10.1007/s12633-022-01658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01658-y

Keywords

Navigation