Skip to main content

Advertisement

Log in

Influence of NiO Supported Silica Nanoparticles on Mechanical, Barrier, Optical and Antibacterial Properties of Polylactic Acid (PLA) Bio Nanocomposite Films for Food Packaging Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study aimed to prepare the nickel oxide supported on silica nanoparticles (NiO NPs) incorporated polylactic acid (PLA) bio nanocomposite films of various concentrations (0.25, 0.5. 0.75, 1 wt%) and study the resultant properties of NiO on the tensile, barrier, surface color, opacity and antibacterial properties for food packaging applications. The maximum tensile strength of 16.4 MPa was obtained at 1 wt% of the prepared biocomposite film. The barrier properties like oxygen transmission rate and water vapor transmission rate were significantly reduced and showed a better value of 841.20 (cc / (m2. day. atm)) and 3.96 (g/ m2 /day) on 1 wt% of NiO. The incorporation of NiO NPs increased the surface color (L*, a*, b*) and the opacity values were bio nanocomposite films. Also, the PLA / NiO bio nanocomposite films showed good antibacterial activity against gram-positive (L.monocytogenes) and gram-negative bacteria (Salmonella). Therefore, the prepared bio nanocomposite films could be used as an excellent packaging material for food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrar S, Habi A, Ajji A, Grohens Y (2018) Synergistic effects in epoxy functionalized graphene and modified organo-montmorillonite PLA/PBAT blends. Appl Clay Sci 157:65–75. https://doi.org/10.1016/j.clay.2018.02.028

    Article  CAS  Google Scholar 

  2. Bach QV, Vu CM, Vu HT (2020) Effects of co-Silanized silica on the mechanical properties and thermal characteristics of natural rubber/styrene-butadiene rubber blend. Silicon 12:1799–1809. https://doi.org/10.1007/s12633-019-00281-8

    Article  CAS  Google Scholar 

  3. Carja G, Nakajima A, Dranca C, Okada K (2010) Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature. J Nanopart Res 12:3049–3056. https://doi.org/10.1007/s11051-010-9899-0

    Article  CAS  Google Scholar 

  4. Çoban O, Bora MÖ, Kutluk T, Özkoç G (2018) Mechanical and thermal properties of volcanic particle filled PLA/PBAT composites. Polym Compos 39:E1500–E1511. https://doi.org/10.1002/pc.24393

    Article  CAS  Google Scholar 

  5. de Julián FC, Mattei G, Sada C et al (2006) Nanostructural and optical properties of cobalt and nickel-oxide/silica nanocomposites. Mater Sci Eng C 26:987–991. https://doi.org/10.1016/j.msec.2005.09.013

    Article  CAS  Google Scholar 

  6. Gaikwad KK, Singh S, Ajji A (2019) Moisture absorbers for food packaging applications. Environ Chem Lett 17:609–628. https://doi.org/10.1007/s10311-018-0810-z

    Article  CAS  Google Scholar 

  7. Gunti R, Ratna Prasad AV, Gupta AVSSKS (2018) Mechanical and degradation properties of natural fiber-reinforced PLA composites: jute, sisal, and elephant grass. Polym Compos 39:1125–1136. https://doi.org/10.1002/pc.24041

    Article  CAS  Google Scholar 

  8. Gupta S, Sindhu S, Varman KA, Ramamurthy PC, Madras G (2012) Hybrid nanocomposite films of polyvinyl alcohol and ZnO as interactive gas barrier layers for electronics device passivation. RSC Adv 2:11536–11543. https://doi.org/10.1039/c2ra21714g

    Article  CAS  Google Scholar 

  9. Helan V, Prince JJ, Al-Dhabi NA et al (2016) Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys 6:712–718. https://doi.org/10.1016/j.rinp.2016.10.005

    Article  Google Scholar 

  10. Kanmani P, Rhim JW (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym 106:190–199. https://doi.org/10.1016/j.carbpol.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  11. Kaphle A, Navya PN, Umapathi A, Daima HK (2018) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett 16:43–58. https://doi.org/10.1007/s10311-017-0662-y

    Article  CAS  Google Scholar 

  12. Kumar R, Jha D, Panda AK (2019) Antibacterial therapeutics delivery systems based on biodegradable polylactide/polylactide-co-glycolide particles. Environ Chem Lett 17:1237–1249. https://doi.org/10.1007/s10311-019-00871-3

    Article  CAS  Google Scholar 

  13. Li S, Yi J, Yu X, Wang Z, Wang L (2020) Preparation and characterization of pullulan derivative antibacterial composite films. Mater Sci Eng C 110:110721. https://doi.org/10.1016/j.msec.2020.110721

    Article  CAS  Google Scholar 

  14. Ma Y, Qian S, Hu L, Qian J, Fontanillo Lopez CA, Xu L (2019) Mechanical, thermal, and morphological properties of PLA biocomposites toughened with silylated bamboo cellulose nanowhiskers. Polym Compos 40:3012–3019. https://doi.org/10.1002/pc.25144

    Article  CAS  Google Scholar 

  15. Marra A, Silvestre C, Duraccio D, Cimmino S (2016) Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol 88:254–262. https://doi.org/10.1016/j.ijbiomac.2016.03.039

    Article  CAS  PubMed  Google Scholar 

  16. Munteanu BS, Aytac Z, Pricope GM, Uyar T, Vasile C (2014) Polylactic acid (PLA)/silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity. J Nanopart Res 16. https://doi.org/10.1007/s11051-014-2643-4

  17. Nan A, Leistner J, Turcu R (2013) Magnetite-polylactic acid nanoparticles by surface initiated organocatalysis ring opening polymerization J Nanoparticle Res 15. https://doi.org/10.1007/s11051-013-1869-x

  18. Paydayesh A, Pashaei Soorbaghi F, Aref Azar A, Jalali-Arani A (2019) Electrical conductivity of graphene filled PLA/PMMA blends: experimental investigation and modeling. Polym Compos 40:704–715. https://doi.org/10.1002/pc.24722

    Article  CAS  Google Scholar 

  19. Radusin T, Tomšik A, Šarić L, Ristić I, Giacinti Baschetti M, Minelli M, Novaković A (2019) Hybrid Pla/wild garlic antibacterial composite films for food packaging application. Polym Compos 40:893–900. https://doi.org/10.1002/pc.24755

    Article  CAS  Google Scholar 

  20. Rai M, Ingle AP, Gupta I, Pandit R, Paralikar P, Gade A, Chaud MV, dos Santos CA (2019) Smart nanopackaging for the enhancement of food shelf life. Environ Chem Lett 17:277–290. https://doi.org/10.1007/s10311-018-0794-8

    Article  CAS  Google Scholar 

  21. Rajivgandhi G, Maruthupandy M, Quero F, Li WJ (2019) Graphene/nickel oxide nanocomposites against isolated ESBL producing bacteria and A549 cancer cells. Mater Sci Eng C 102:829–843. https://doi.org/10.1016/j.msec.2019.05.008

    Article  CAS  Google Scholar 

  22. Ramesh P, Prasad BD, Narayana KL (2020) Influence of Montmorillonite clay content on thermal, mechanical, Water Absorption and Biodegradability Properties of Treated Kenaf Fiber/ PLA-Hybrid Biocomposites Silicon https://doi.org/10.1007/s12633-020-00401-9

  23. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008

    Article  CAS  Google Scholar 

  24. Rojas K, Canales D, Amigo N, Montoille L, Cament A, Rivas LM, Gil-Castell O, Reyes P, Ulloa MT, Ribes-Greus A, Zapata PA (2019) Effective antibacterial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles. Compos Part B Eng 172:173–178. https://doi.org/10.1016/j.compositesb.2019.05.054

    Article  CAS  Google Scholar 

  25. Saravana S, Kandaswamy R (2019) Investigation on the mechanical and thermal properties of PLA/calcium silicate biocomposites for injection molding applications. Silicon 11:1143–1150. https://doi.org/10.1007/s12633-018-9926-9

    Article  CAS  Google Scholar 

  26. Sarkar P, Choudhary R, Panigrahi S, Syed I, Sivapratha S, Dhumal CV (2017) Nano-inspired systems in food technology and packaging. Environ Chem Lett 15:607–622. https://doi.org/10.1007/s10311-017-0649-8

    Article  CAS  Google Scholar 

  27. Seethamraju S, Kumar S, Bharadwaj KB et al (2016) Million-fold decrease in polymer moisture permeability by a Graphene monolayer. ACS Nano 10:6501–6509. https://doi.org/10.1021/acsnano.6b02588

    Article  CAS  PubMed  Google Scholar 

  28. Shankar S, Wang LF, Rhim JW (2018) Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater Sci Eng C 93:289–298. https://doi.org/10.1016/j.msec.2018.08.002

    Article  CAS  Google Scholar 

  29. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:1–20. https://doi.org/10.1186/s12951-017-0308-z

    Article  CAS  Google Scholar 

  30. Sousa GM, Soares Júnior MS, Yamashita F (2013) Active biodegradable films produced with blends of rice flour and poly(butylene adipate co-terephthalate): effect of potassium sorbate on film characteristics. Mater Sci Eng C 33:3153–3159. https://doi.org/10.1016/j.msec.2013.03.042

    Article  CAS  Google Scholar 

  31. Su JF, Huang Z, Yuan XY, Wang XY, Li M (2010) Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr Polym 79:145–153. https://doi.org/10.1016/j.carbpol.2009.07.035

    Article  CAS  Google Scholar 

  32. Suresh S, Karthikeyan S, Saravanan P, Jayamoorthy K (2016) Comparison of antibacterial and antifungal activities of 5-amino-2-mercaptobenzimidazole and functionalized NiO nanoparticles. Karbala Int J Mod Sci 2:188–195. https://doi.org/10.1016/j.kijoms.2016.05.001

    Article  Google Scholar 

  33. Venkata Prasad C, Sudhakara P, Prabhakar MN, Ur Rehman Shah A, Song JI (2018) An investigation on the effect of silica aerogel content on thermal and mechanical properties of sisal/PLA Nano composites. Polym Compos 39:835–840. https://doi.org/10.1002/pc.24005

    Article  CAS  Google Scholar 

  34. Venkatesan R, Rajeswari N (2019) Preparation, mechanical and antibacterial properties of SiO 2/ poly(butylene adipate-co-terephthalate) films for active food packaging. Silicon 11:2233–2239. https://doi.org/10.1007/s12633-015-9402-8

    Article  CAS  Google Scholar 

  35. Yadav M, Liu YK, Chiu FC (2019) Fabrication of cellulose nanocrystal/silver/alginate bionanocomposite films with enhanced mechanical and barrier properties for food packaging application. Nanomaterials 9. https://doi.org/10.3390/nano9111523

  36. Yang TI, Brown RNC, Kempel LC, Kofinas P (2010) Surfactant-modified nickel zinc iron oxide/polymer nanocomposites for radio frequency applications. J Nanopart Res 12:2967–2978. https://doi.org/10.1007/s11051-010-9887-4

    Article  CAS  Google Scholar 

  37. Yoksan R, Chirachanchai S (2010) Silver nanoparticle-loaded chitosan-starch based films: fabrication and evaluation of tensile, barrier and antibacterial properties. Mater Sci Eng C 30:891–897. https://doi.org/10.1016/j.msec.2010.04.004

    Article  CAS  Google Scholar 

  38. Zare Y, Shabani I (2016) Polymer/metal nanocomposites for biomedical applications. Mater Sci Eng C 60:195–203. https://doi.org/10.1016/j.msec.2015.11.023

    Article  CAS  Google Scholar 

  39. Zhou Y, Lei L, Yang B, Li J, Ren J (2018) Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym Test 68:34–38. https://doi.org/10.1016/j.polymertesting.2018.03.044

    Article  CAS  Google Scholar 

  40. Zhou Y, Lei L, Yang B, Li J, Ren J (2017) Preparation of PLA-based nanocomposites modified by nano-attapulgite with good toughness-strength balance. Polym Test 60:78–83. https://doi.org/10.1016/j.polymertesting.2017.03.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Medical Physics, Anna University, Chennai for rendering their support to this research work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Vishnuvarthanan.M: Data curation; Formal analysis; Investigation; Methodology; Validation; Writing - original draft. Ramji. V: Conceptualization; Investigation; Validation; Supervision; Writing - review & editing.

Corresponding author

Correspondence to M. Vishnuvarthanan.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

It was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramji, V., Vishnuvarthanan, M. Influence of NiO Supported Silica Nanoparticles on Mechanical, Barrier, Optical and Antibacterial Properties of Polylactic Acid (PLA) Bio Nanocomposite Films for Food Packaging Applications. Silicon 14, 531–538 (2022). https://doi.org/10.1007/s12633-020-00839-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00839-x

Keywords

Navigation