Skip to main content
Log in

Preparation and Properties of Hollow Glass Microsphere/Silicone Rubber Composite Material with the Transition Layer of Silicone Resin

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Hollow glass microsphere (HGM)/silicone rubber composite material was prepared by using silicone resin as the transition layer between silicone rubber and HGM. Silane coupling agent was hydrolyzed on the surface of HGM by in-situ polymerization to form the silicone resin layer. And then such modified HGM was added to the silicone rubber to prepare HGM/silicone rubber composite material. The curing process, mechanical property, morphology, thermal stability, and electrical property were studied. It is found that the transition layer of silicone resin can speed up the curing reaction. And the curing time becomes longer with the increase of HGM. The transition layer of silicone resin also improves the compatibility between HGM and silicone rubber. And the mechanical properties of the silicone rubber are reduced with the increase of HGM. The introduction of HGM can improve the thermostability of the silicone rubber. And HGM can obviously reduce the dielectric constant (from 3.4 to 2.6) and increase the dielectric breakdown strength (from 14.78 kV/mm to 16.71 kV/mm) of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahimi A, Mashak A (2013) Plastics. Plast Rubber Compos 42:223–230

    Article  CAS  Google Scholar 

  2. Picard L, Phalip P, Fleury E, Ganachaud F (2015) Ganachaud. Prog Org Coat 80:120–141

    Article  CAS  Google Scholar 

  3. Momen G, Farzaneh M (2011). Rev Adv Mater Sci 27:1–13

    CAS  Google Scholar 

  4. Willi V, Miller RD, Geraud D (2010). Chem Rev 110:56

    Article  Google Scholar 

  5. Zhao G, Ishizaka T, Kasai H, Hasegawa M, Furukawa T, Nakanishi H, Oikawa H (2009). Chem Mater 21:419–424

    Article  CAS  Google Scholar 

  6. Arden WM (2002). Curr Opin Solid State Mater 6:371–377

    Article  Google Scholar 

  7. Seino M, Wang W, Lofgreen JE, Puzzo DP, Manabe T, Ozin GA (2011) Low-k periodic mesoporous organosilica with air walls: POSS-PMO. J Am Chem Soc 133:18082–18085

    Article  CAS  Google Scholar 

  8. Yang J, Liu S, Zhu F, Huang Y, Li B, Zhang L (2011). J Polym Sci Pol Chem 49:381–391

    Article  CAS  Google Scholar 

  9. Towery D, Fury MA (1998). J Electron Mater 27:1088–1094

    Article  CAS  Google Scholar 

  10. Dang TD, Mather PT, Alexander JM, Grayson C, Houtz M, Spry R, Arnold F (2000). J Polym Sci Pol Chem 38:1991–2003

    Article  CAS  Google Scholar 

  11. Tao L, Yang H, Liu J, Fan L, Yang S (2009). Polymer 50:6009–6018

    Article  CAS  Google Scholar 

  12. Tong J, Diao S, Jin K, Yuan C, Wang J, Sun J, Fang Q (2014). Polymer 55:3628–3633

    Article  CAS  Google Scholar 

  13. He F, Yuan C, Li K, Diao S, Jin K, Wang J, Tong J, Ma J, Fang Q (2013). RSC Adv 3:23128

    Article  CAS  Google Scholar 

  14. Goto K, Kakuta M, Inoue Y, Matsubara M (2000). J Photopolym Sci Technol 13:313–315

    Article  CAS  Google Scholar 

  15. Liu B, Hu W, Chen C, Jiang Z, Zhang W, Wu Z, Matsumoto T (2004). Polymer 45:3241–3247

    Article  CAS  Google Scholar 

  16. Ju J, Wang Q, Wang T, Wang C (2013). J Colloid Interface Sci 404:36–41

    Article  CAS  Google Scholar 

  17. Wang W, Rohitkumar H, Kang E, Neoh K (2004). Adv Mater 16:54–57

    Article  Google Scholar 

  18. Yuan Y, Diao S, Zhao C, Ge S, Wang X, Duan B (2019) Silicon. https://doi.org/10.1007/s12633-019-00234-1

  19. Feng S, Zhang J, Li M, Zhu Q (2004) Organosilicon polymer and its application. Chemical Industry Press, Beijing

    Google Scholar 

  20. Diao S, Zhang S, Yang Z, Feng S, Zhang C, Wang Z, Wang G (2011). J Appl Polym Sci 120:2440–2447

    Article  CAS  Google Scholar 

  21. Diao S, Dong F, Meng J, Ma P, Zhao Y, Feng S (2015). Mater Chem Phys 153:161–167

    Article  CAS  Google Scholar 

  22. Diao S, Jin K, Yang Z, Lu H, Feng S, Zhang C (2011). Mater Chem Phys 129:202–208

    Article  CAS  Google Scholar 

  23. Watanabe Y, Shibasaki Y, Ando S, Ueda M (2006). Polym J 38:79–84

    Article  CAS  Google Scholar 

  24. Maier G (2001). Prog Polym Sci 26:3–65

    Article  CAS  Google Scholar 

  25. Martin SJ, Godschalx JP, Mills ME, Shaffer EO, Townsend PH (2000). Adv Mater 12:1769–1778

    Article  CAS  Google Scholar 

  26. Fang T, Shimp DA (1995). Prog Polym 20:61–118

    Article  CAS  Google Scholar 

  27. Park SJ, Jin FL, Lee C (2005). Mater Sci Eng A 402:335–340

    Article  Google Scholar 

  28. Li B, Yuan J, An Z, Zhang J (2011). Mater Lett 65:1992–1994

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (NSFC, No. 51603178) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Diao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Diao, S., Yuan, Y. et al. Preparation and Properties of Hollow Glass Microsphere/Silicone Rubber Composite Material with the Transition Layer of Silicone Resin. Silicon 13, 517–522 (2021). https://doi.org/10.1007/s12633-020-00472-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00472-8

Keywords

Navigation