Skip to main content
Log in

Evaluation of Nickel Neurotoxicity and High Sorption through a Hybrid Yeast / Silsesquioxane Material

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The presence of heavy metals in water is one of the major concerns in the public health area. So, the characterization of inorganic compounds toxicity and their detection, speciation and removal are some of the biggest environmental challenges today. Within this context, the present work evaluated the effect caused by Ni2+ in neuronal autofluorescence recorded in brain slices. Besides, a bioinorganic nanostructured hybrid material with great potential for heavy metals removal: yeast Saccharomyces cerevisiae modified with Silsesquioxane was applied for Ni2 sorption. The neurotoxicity tests revealed that in the presence of Ni2+ concentrations of 10, 20 and 30 μM (0.5, 1.0 and 1.5 ppm), irreversible autofluorescence changes occurred. In the sorption tests, the hybrid material revealed a maximum capacity of sorption of 64.6 mg/g. This material was able to reach 77.7% of removal of the initial Ni2+ solution using a 100 cm3/g liquid/solid ratio, at pH 6 and 15 min of contact time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merian E (1984) Introduction on environmental chemistry and global cycles of chromium, nickel, cobalt beryllium, arsenic, cadmium and selenium, and their derivatives. Toxicol Environ Chem 8(1):9–38

    Article  CAS  Google Scholar 

  2. Fellenberg G, Introdução aos problemas da poluição ambiental, EPU - Springer – EDUSP São Paulo, 1980

  3. Yeganeha M, Afyuni M, Khoshgoftarmanesh A-H, Khodakarami L, Amini M, Soffyanian A-R, Schulin R (2012) Mapping of human health risks arising from soil nickel and mercury contamination. J Hazard Mater 244-245:225–239

    Article  Google Scholar 

  4. Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128:412–425

    CAS  PubMed  Google Scholar 

  5. Ghiselli G, Jardim WF (2007) Interferentes endócrinos no ambiente. Quím Nova 30(3):695–706

    Article  Google Scholar 

  6. Birnbaum LS, Fenton SE (2003) Cancer and developmental exposure to endocrine disruptors. Environ Health Perspect 111(4):389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oskarsson A, Tjalve H (1979) The distribution and metabolism of nickel carbonyl in mice. Br J Ind Med 36:326–335

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Koeppen BM, Stanton BA, Berne & Levy: Fisiologia(*), 6ª ed., Ed. Elsevier, Rio de Janeiro, 2009

  9. Laakso MP, Partanen K, Riekkinen P, Lehtovirta M, Helkala EL, Hallikainen M, Soininen H (1996) Hippocampal volumes in Alzheimer's disease, Parkinson's disease with and without dementia, and in vascular dementia: An MRI study. Neurology 46(3):678–681

    Article  CAS  PubMed  Google Scholar 

  10. Sadiq S, Ghazala Z, Chowdhury A, Busselberg D. Metal toxicity at the synapse: presynaptic, Postsynaptic, and Long-Term Effects J Toxicol 2012; 1–42

  11. Gorji A, Scheller D, Tegtmeier F, Kohling R, Straub H, Speckmann EJ (2000) NiCl2 and amiloride induce spreading depression in Guinea pig hippocampal slices. Cephalalgia 20:740–747

    Article  CAS  PubMed  Google Scholar 

  12. Cohen LB, Salzberg BM, Grinvald A (1978) Optical methods for monitoring neuron activity. Ann Rev Neurosci 1:171–182

    Article  CAS  PubMed  Google Scholar 

  13. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256

    Article  CAS  PubMed  Google Scholar 

  14. Shuttleworth CW (2010) Use of NAD(P) H and Flavoprotein autofluorescence transients to probe neuron and astrocyte responses to synaptic activation. Neurochem Int 56:379–386

    Article  CAS  PubMed  Google Scholar 

  15. Duchen MR, Surin A, Jacobson J (2003) Imaging mitochondrial function in intact cells. Methods Enzymol 361:353–389

    Article  CAS  PubMed  Google Scholar 

  16. Fomina M, Gadd GM (2013) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  Google Scholar 

  17. Vieira EG, Soares IV, da Silva NC, Perujo SD, do Carmo DR, Dias Filho NL (2013) Synthesis and characterization of 3-[(thiourea)-propyl]-functionalized silica gel and its application in adsorption and catalysis. New J Chem 37(7):1933

    Article  CAS  Google Scholar 

  18. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430

    Article  CAS  Google Scholar 

  19. Lim SK, Hong EP, Song YH, Choi HJ, Chin IJ (2012) Thermodynamic interaction and mechanical characteristics of nylon 6 and polyhedral oligomeric silsesquioxane nanohybrids. J Mater Sci 47:308–314

    Article  CAS  Google Scholar 

  20. Voronkov MG, Lavrent'yev VI (1982) Polyhedral Oligosilsesquioxanes and their Homo derivatives. Top Curr Chem 102:199–236

    Article  CAS  Google Scholar 

  21. Do Carmo DR, Paim LL, Metzker G, Dias Filho NL, Stradiotto NR (2010) A novel nanostructured composite formed by interaction of cooper octa(3-aminopropyl) octasilsesquioxane with azide ligands: preparation, characterization and a voltammetric application. Mater Res Bull 45:1263–1270

    Article  Google Scholar 

  22. Blanco I (2018) The rediscovery of POSS: a molecule rather than a filler. Polymers. 10(8):904

    Article  PubMed Central  Google Scholar 

  23. Soares IV, Vieira EG, Do Carmo DR, Dias Filho NL (2013) Solid-phase extraction of metal ions from fuel ethanol with a nanostructured adsorbent. Microchem J 110:120–126

    Article  CAS  Google Scholar 

  24. Soares LA, Da Silveira TFS, Silvestrini DR, Bicalho UO, Do Carmo DR (2013) Use of a silsesquioxane organically modified with 4-amino-5-(4-pyridyl)-4H-1,2,4-triazole-3-thiol (APTT) for adsorption of metal ions. Int J Chem 5(1):39–48

    Article  CAS  Google Scholar 

  25. Vieira EG, Soares IV, Pires G, Ramos RAV, do Carmo DR, Dias Filho NL (2015) Study on determination and removal of metallic ions from aqueous and alcoholic solutions using a new POSS adsorbent. Chem Eng J 264:77–88

    Article  CAS  Google Scholar 

  26. Fernandes DS, Maraldi VA, Filho NLD, Do Carmo DR. Reactivity of a SilsesquioxaneOrganofunctionalized with 4-Amino-5-phenyl-4H-[1,2,4]-Triazole-3-thiol: complementary characterization and an application to Chronoamperometric detection of L-dopamine. Silicon 2018; 1–12

  27. Da Silveira TFS, Silvestrini DR, Bicalho UO, do Carmo DR (2013) Voltammetric study of a cubic Silsesquioxane organically modified with imidazole and their subsequent reaction with cadmium and Hexacyanoferrate (III). Int J Electrochem Sci 8:872–888

    Google Scholar 

  28. Do Carmo DR, Silvestrini DR, da Silveira TFS, Cumba LR, Dias Filho NL, Soares LA (2015) Silsesquioxane organofunctionalized with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole: preparation and subsequent reaction with silver and potassium hexacyanoferrate (III) for detection of l-cysteine. Mater Sci Eng C Mater Biol Appl 57:24–30

    Article  PubMed  Google Scholar 

  29. Filho NLD, Costa RM, Marangoni F (2008) Adsorption of transition-metal ions in ethanol solution by a nanomaterial based on modified silsesquioxane. Colloids Surf A Physicochem Eng Asp 317(1–3):625–635

    Article  Google Scholar 

  30. Trama-Freitas B, Freitas JC, Martins RC, Gando-Ferreira LM, Quinta-Ferreira ME, Quinta-Ferreira RM, Do Carmo DR (2017) A study of bio-hybrid silsesquioxane/yeast: biosorption and neuronal toxicity of lead. J Biotechnol 264:43–50

    Article  CAS  PubMed  Google Scholar 

  31. Chance B, Schoener B, Oshino R, Itshak F, Nakase Y (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254:4764–4771

    CAS  PubMed  Google Scholar 

  32. Padmavathy V, Vasudevan P, Dhingra S (2003) Biosorption of nickel (II) ions on Baker’s yeast. Process Biochem 38(10):1389–1395

    Article  CAS  Google Scholar 

  33. Özer A, Özer D (2003) Comparative study of the biosorption of Pb (II), Ni (II) and Cr (VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100(1–3):219–229

    Article  PubMed  Google Scholar 

  34. El-Sadaawy M, Abdelwahab O (2014) Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat. Alex Eng J 53:399–408

    Article  Google Scholar 

  35. Lee C-G, Lee S, Park JA, Park C, Lee SJ, Kim SB, An B, Yun ST, Lee SH, Choi JW (2017) Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere 166:203–211

    Article  CAS  PubMed  Google Scholar 

  36. Dobrowolski R, Szczes A, Czemierska M, Jarosz-Wikołazka A (2017) Studies of cadmium (II), lead (II), nickel (II), cobalt (II) and chromium (VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour Technol 225:113–120

    Article  CAS  PubMed  Google Scholar 

  37. Rashid A, Bhatti HN, Iqbal M, Noreen S (2016) Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: a mechanistic study. Ecol Eng 91:459–471

    Article  Google Scholar 

  38. Ajmal M, Rao RA, Ahmad R, Ahmad J (2000) Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater. J Hazard Mater 79(1–2):117–131

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Wang X (2015) Adsorption and desorption of nickel (II) ions from aqueous solution by a lignocellulose/Montmorillonite Nanocomposite. PLoS One 10(2):1–21

    Google Scholar 

Download references

Acknowledgements

The author Bianca Trama Freitas acknowledges the CNPq (Process 205379/2014-1) for the financial support. Rui C. Martins acknowledges the IFCT 2014 programme (IF/00215/2014) with financing from the European Social Fund and the Human Potential Operational Programme. The Biophysics Group thanks the CNC– Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal, for providing the rat brains. Their work was funded by strategic project UID/NEU/04539/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devaney R. do Carmo.

Ethics declarations

Conflict of Interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trama-Freitas, B., Franco, F., Martins, R.C. et al. Evaluation of Nickel Neurotoxicity and High Sorption through a Hybrid Yeast / Silsesquioxane Material. Silicon 13, 259–265 (2021). https://doi.org/10.1007/s12633-020-00420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00420-6

Keywords

Navigation