Skip to main content
Log in

Initial Studies on Cucumber Transcriptome Analysis under Silicon Treatment

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study provides first results of transcriptome data for Cucumis sativus under sodium silicate (Si) supplementation, in order to identify differentially expressed genes (DEGs). In vitro-generated clonal C. sativus line B10 material, derived from leaf microexplants, was established and the plants were cultivated in Murashige and Skoog medium, non-supplemented and Si-supplemented with Na2(SiO2)xxH2O, respectively. The mRNA enrichment of pooled leaf and stem material from both the control and sodium Si-supplemented plants was performed, followed by RNA-Seq. Analysis of the cucumber transcriptome of the control and the Si-treated plants allowed for the determination of 18,957 and 18,882 transcripts referring to 19,896 genes. In total, 1,136 DEGs were determined and 522 (46 %) were assigned to biological processes, in most instances related to primary metabolism (photosynthesis, transport, biosynthesis), thereby supporting previous reports about the impact of Si on plant development, while some transcripts belong to secondary metabolism enabling subsequent analyses including stresses. Some transcripts were slightly up- or down-regulated and might be related to NaCl traces, due to the form of Si used in this instance. These transcriptome data provide the first insights into intermediate Si-accumulating cucumber tissue culture under sodium Sitreatment, with prior analyses on abiotic and biotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sposito G (2008) The chemistry of soils. Oxford University Press

  2. Epstein E (1999) Annu Rev Plant Biol 50(1):641–664

    Article  CAS  Google Scholar 

  3. Epstein E (1994) Proc Natl Acad Sci USA 91(1):11–17

    Article  CAS  Google Scholar 

  4. Mitani N, Ma J F (2005) J Exp Bot 56(414):1255–1261

    Article  CAS  Google Scholar 

  5. Miyake Y, Takahashi E (1983) Soil Sci Plant Nutr 29(1):71–83

    Article  CAS  Google Scholar 

  6. Liang Y, Si J, Römheld V (2005) New Phytol 167(3):797–804

    Article  CAS  Google Scholar 

  7. Nikolic M, Nikolic N, Liang Y, Kirkby E A, Römheld V (2007) Plant Physiol 143(1):495–503

    Article  CAS  Google Scholar 

  8. Ma J F, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) Nature 448(7150):209–212

    Article  CAS  Google Scholar 

  9. Chiba Y, Mitani N, Yamaji N, Ma J F (2009) Plant J 57(5):810–818

    Article  CAS  Google Scholar 

  10. Mitani N, Yamaji N, Ma J F (2009) Plant Cell Physiol 50(1):5–12

    Article  CAS  Google Scholar 

  11. Mitani-Ueno N, Yamaji N, Ma J F (2011) Plant Signal Behav 6(7):991

    Article  CAS  Google Scholar 

  12. Deshmukh R K, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger R R (2013) Plant Mol Biol 83(4–5):303–315

    Article  CAS  Google Scholar 

  13. Samuels A, Glass A, Ehret D, Menzies J (1991) Plant Cell Environ 14(5):485–492

    Article  Google Scholar 

  14. Jana S, Jeong B R (2013) Trends Hortic Res 83(4–5):303–315

    Google Scholar 

  15. Sivanesan I, Park SW (2014) Front Plant Sci 5

  16. Adatia M, Besford R (1986) Ann Bot 58(3):343–351

    Article  CAS  Google Scholar 

  17. Burza W, Malepszy S (1995) Plant Breeding 114(4):341–345

    Article  Google Scholar 

  18. Wóycicki R, Witkowicz J, Gawronski P, Dabrowska J, Lomsadze A, Pawelkowicz M, Siedlecka E, Yagi K, Plader W, Seroczynska A et al (2011) PLoS One 6(7):e22,728

    Article  Google Scholar 

  19. Murashige T, Skoog F (1962) Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  20. Alverson A J, Rice D W, Dickinson S, Barry K, Palmer J D (2011) Plant Cell 23(7):2499–2513

    Article  CAS  Google Scholar 

  21. Pląder W, Yukawa Y, Sugiura M, Malepszy S (2007) Cell Mol Biol Lett 12(4):584–594

    Article  Google Scholar 

  22. Koressaar T, Remm M (2007) Bioinformatics 23(10):1289– 1291

    Article  CAS  Google Scholar 

  23. Kreps J A, Wu Y, Chang H S, Zhu T, Wang X, Harper J F (2002) Plant Physiol 130(4):2129–2141

    Article  CAS  Google Scholar 

  24. Tomita Y, Mizuno T, Díez J, Naito S, Ahlquist P, Ishikawa M (2003) J Virol 77(5):2990–2997

    Article  CAS  Google Scholar 

  25. Kolomiets M V, Chen H, Gladon R J, Braun E, Hannapel D J (2000) Plant Physiol 124(3):1121–1130

    Article  CAS  Google Scholar 

  26. Ma J, Yamaji N (2008) Cell Mol Life Sci 65(19):3049–3057

    Article  CAS  Google Scholar 

  27. Lee Y, Choi D, Kende H (2001) Curr Opin Plant Biol 4(6):527–532

    Article  CAS  Google Scholar 

  28. Máthé C, Mosolygó Á, Surányi G, Beke A, Demeter Z, Tóth V R, Beyer D, Mészáros I, Márta M et al (2012) Aquat Bot 97(1):57–63

    Article  Google Scholar 

  29. Fauteux F, Rémus-Borel W, Menzies J G, Bélanger R R (2005) FEMS Microbiol Ecol 249(1):1–6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Holz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 14.5 KB)

(PNG 559 KB)

(XLS 146 KB)

(PNG 74.5 KB)

(XLS 25.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holz, S., Kube, M., Bartoszewski, G. et al. Initial Studies on Cucumber Transcriptome Analysis under Silicon Treatment. Silicon 11, 2365–2369 (2019). https://doi.org/10.1007/s12633-015-9335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9335-2

Keywords

Navigation