Skip to main content
Log in

Comparison of the Mechanical and Thermo-Mechanical Properties of Unfilled and SiC Filled Short Glass Polyester Composites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper presents a comparison between particulate filled (SiC particles) and unfilled glass polyester composites on the basis of their mechanical and thermo-mechanical properties. The results show that particulate filled composites have a decreasing trend in mechanical properties when compared to the unfilled glass polyester composites. In particulate filled composites, the tensile and flexural strength of the composites decrease with the addition of 10 wt.-% SiC particles but increase with 20 wt.-% SiC particles. In the case of the unfilled glass polyester composite, the tensile and flexural strength of the composites increase with an increase in the fiber loading. However, higher values of tensile strength and flexural strength of particulate filled glass polyester were found than that of the unfilled glass polyester composite. In the case of thermo-mechanical and thermal properties, the particulate filled composites show better dynamical and thermal properties when compared to the unfilled glass polyester composites. The mechanical and thermal properties (i.e. thermal conductivity) are also calculated using FE modeling (ANSYS software) and the results from this simulation shows good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varga CS, Miskolczi N, Bartha L, Lipóczi G (2010) Improving the mechanical properties of glass-fibre-reinforced polyester composites by modification of fibre surface. Mater Des 31:185–193

    Article  CAS  Google Scholar 

  2. Abdel-Magid B, Lopez-Anido R, Smith G, Trofka S (2003) Flexure creep properties of E-glass reinforced polymers. Compos Struct 62:247–253

    Article  Google Scholar 

  3. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2009) Tribo-performance of polyester hybrid composites: damage assessment and parameter optimization using Taguchi design. Mater Des 30:57–67

    Article  CAS  Google Scholar 

  4. Jung-Il K, Kang PH, Nho YC (2004) Positive temperature coefficient behavior of polymer composites having a high melting temperature. J Appl Polym Sci 92:394–401

    Article  Google Scholar 

  5. Nikkeshi S, Kudo M, Masuko T (1998) Dynamic viscoelastic properties and thermal properties of powder-epoxy resin composites. J Appl Polym Sci 69:593–598

    Article  Google Scholar 

  6. Zhu K, Schmauder S (2003) Prediction of the failure properties of short fiber reinforced composites with metal and polymer matrix. Comput Mater Sci 28:743–758

    Article  CAS  Google Scholar 

  7. Rusu M, Sofian N, Rusu D (2001) Mechanical and thermal properties of zinc powder filled high density polyethylene composites. Polym Test 20:409–417

    Article  CAS  Google Scholar 

  8. Tavman IH (1997) Thermal and mechanical properties of copper powder filled poly (ethylene) composites. Powder Technol 91:63–76

    Article  CAS  Google Scholar 

  9. Rothon RN (1997) Mineral fillers in thermoplastics: filler manufacture. J Adhes 64:87–109

    Article  Google Scholar 

  10. Rothon RN (1999) Mineral fillers in thermoplastics: filler manufacture and characterisation. Adv Polym Sci 139:67–107

    Article  CAS  Google Scholar 

  11. Peng S, Landel R (1975) Induced anisotropy of thermal conductivity of polymer solids under large strains. J Appl Polym Sci 19:49–68

    Article  CAS  Google Scholar 

  12. Choy CL, Young K (1977) Thermal conductivity of semi crystalline polymers—a model. Polym 18:769–776

    Article  CAS  Google Scholar 

  13. Griesinger A, Hurler W, Pietralla M (1997) A photo thermal method with step heating for measuring the thermal diffusivity of anisotropic solids. Int J Heat Mass Transfer 40:3049–3058

    Article  CAS  Google Scholar 

  14. Bujard P, Kühnlein S, Ino S, Shiobara T (1994) Thermal conductivity of molding compounds for plastic packaging. IEEE Trans Compon Packaging Manuf Technol Part A 17:527–532

    Article  CAS  Google Scholar 

  15. Zhou WY, Qi SH, Tu CC, Zhao HZ (2007) Novel heat-conductive composite silicon rubber. J Appl Polym Sci 104:2478–2483

    Article  CAS  Google Scholar 

  16. Hsieh CY, Chung SL (2006) High thermal conductivity epoxy molding compound filled with a combustion synthesized ALN powder. J Appl Polym Sci 102:4734–4740

    Article  CAS  Google Scholar 

  17. Kumlutas D, Tavman IH, Çoban MT (2003) Thermal conductivity of particle filled polyethylene composite materials. Compos Sci Technol 63:113–117

    Article  CAS  Google Scholar 

  18. Pezzotti G, Kamada I, Miki S (2000) Thermal conductivity of ALN/Polystyrene interpenetrating networks. J Eur Ceram Soc 20:1197–1203

    Article  CAS  Google Scholar 

  19. Xie SH, Zhu BK, Li JB, Wei XZ, Xu ZK (2004) Preparation and properties of polyimide/aluminum nitride composites. Polym Test 23:797–801

    Article  CAS  Google Scholar 

  20. Richard FH, Peter HS (2002) Thermal conductivity of platelet-filled polymer composites. J Am Ceram Soc 85:851–857

    Google Scholar 

  21. Price DM, Jarratt M (2002) Thermal conductivity of PTFE and PTFE composites. Thermochim Acta 392:231–236

    Article  Google Scholar 

  22. Li HY, Jacob KI, Wong CP (2003) An improvement of thermal conductivity of underfill materials for flip-chip packages. IEEE Trans Adv Packaging 26:25–32

    Article  Google Scholar 

  23. Hansen D, Ho C (1965) Thermal conductivity of high polymers. J Polym Sci 3:659–670

    Article  CAS  Google Scholar 

  24. Tavman I (1991) Thermal anisotropy of polymers as a function of their molecular orientation. Experimental heat transfer, fluid mechanics, and thermodynamics. Elsevier, pp 1562–1568

  25. Progelhof RC, Throne JL, Ruetsch RR (1976) Methods of predicting the thermal conductivity of composites systems. J Polym Eng Sci 16:615–625

    Article  CAS  Google Scholar 

  26. Saxena NS, Pradeep P, Mathew G, Thomas S, Gustafsson M, Gustafsson SE (1999) Thermal conductivity of styrene butadiene rubber compounds with natural rubber prophylactics waste as filler. Eur Polym J 35:1687–1693

    Article  CAS  Google Scholar 

  27. Ishida H, Rimdusit S (1998) Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta 32:177–186.

    Article  Google Scholar 

  28. Bujard P (1988) Thermal conductivity of boron nitride filled epoxy resin: temperature dependence and influence of sample preparation. In: Proceedings of the thermal phenomena in the fabrication and operation of electronic components: i-therm ‘88, interSociety conference, pp 41–49

  29. Lee GW, Park M, Kim JK, Lee JI, Yoon HG (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos Part A 37:727–734

    Article  Google Scholar 

  30. Bae JW, Kim WH, Cho SH (2000) The properties of ALN-filled epoxy molding compounds by the effects of filler size distribution. J Mater Sci 35:5907–5913

    Article  CAS  Google Scholar 

  31. He H, Fu RL, Shen Y, Han YC, Song XF (2007) Preparation and properties of Si3N4/Ps composites used for electronic packaging. Compos Sci Technol 67:2493–2499

    Article  CAS  Google Scholar 

  32. Lee WS, Yu J (2005) Comparative study of thermally conductive fillers in Underfill for the electronic components. Diamond Relat Mater 14:1647–1653

    Article  CAS  Google Scholar 

  33. Chen YM, Ting JM (2002) Ultra high thermal conductivity polymer composites. Carbon 40:359–362

    Article  CAS  Google Scholar 

  34. Fu SY, Mai YW (2003) Thermal conductivity of misaligned short- fiber-reinforced polymer composites. J Appl Polym Sci 88:1497–1505

    Article  CAS  Google Scholar 

  35. Georje J, Joseph K, Bhagavan SS, Thomas S (1993) Influence of short pineapple fiber on the viscoelastic properties of low density polyethylene composites. Mater Lett 18:163

    Article  Google Scholar 

  36. Kubat J, Rigdahl M, Welander M (1990) Characterization of interfacial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analysis. J Appl Polym Sci 39:1527

    Article  CAS  Google Scholar 

  37. Schledjewski R, Karger-Kocsis J (1994) Dynamic mechanical analysis of glass mat-reinforced polypropylene (GMT- PP). J Thermoplast Compos Mater 7:270–277

    Article  CAS  Google Scholar 

  38. Joseph K, Thomas S, Pavithran C (1993) Dynamic mechanical properties of short sisal fiber reinforced low density polyethylene composites. J Reinf Plast Compos 12:139–155

    Article  CAS  Google Scholar 

  39. Joseph K, Thomas S, Pavithran C (1992) Viscoelastic properties of short-sisal-fiber-filled low-density polyethylene composites: Effect of fiber length and orientation. Mater Lett 15:224–228

    Article  CAS  Google Scholar 

  40. Ghosh P, Bose NR, Mithra BC, Das S (1997) Dynamic mechanical analysis of FRP composites based on different fiber reinforcements and epoxy resin as the matrix material. J Appl Polym Sci 64:2467–2472

    Article  CAS  Google Scholar 

  41. Gassan J, Bledzki AK (1997) Composites processing and microstructure. In: Proceedings of ICCM –II, 4, 1997 Gold Goast, Australia, pp 762–70

  42. Kumar S, Patnaik A, Satapathy BK (2011) Viscoelastic interpretations of erosion performance of short aramid fibre reinforced vinyl ester resin composites. J Mater Sci 46:7489–7500

    Article  CAS  Google Scholar 

  43. Kumar S, Satapathy BK, Patnaik A (2011) Thermo-mechanical correlations to erosion performance of short carbon fibre reinforced vinyl ester resin composites. Mater Des 32:2260–2268

    Article  Google Scholar 

  44. Shojaei A, Fahimian M, Derakhshandeh B (2007) Thermally conductive rubber-based composite friction materials for railroad brakes-thermal conduction characteristics. Compos Sci Technol 67:2665–2674

    Article  CAS  Google Scholar 

  45. Mattea M, Urbicain MJ, Rotstein E (1986) Prediction of thermal conductivity of vegetable foods by the Effective Medium Theory. J Food Sci 51:134

    Article  Google Scholar 

  46. Ramani K, Vaidyanathan A (1995) Finite element analysis of effective thermal conductivity of filled polymeric composites. J Compos Mater 29:1725–1740

    Article  CAS  Google Scholar 

  47. Patnaik A, Abdulla MD, Satapathy A, Biswas S, Satapathy BK (2010) A study on a possible correlation between thermal conductivity and wear resistance of particulate filled polymer composites. Mater Des 31:837–849

    Article  CAS  Google Scholar 

  48. Harsha AP, Tewari US, Venkataraman B (2003) Solid particle erosion behaviour of various polyaryletherketone composites. Wear 254:693–712

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Patnaik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaundal, R., Patnaik, A. & Satapathy, A. Comparison of the Mechanical and Thermo-Mechanical Properties of Unfilled and SiC Filled Short Glass Polyester Composites. Silicon 4, 175–188 (2012). https://doi.org/10.1007/s12633-012-9121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-012-9121-3

Keywords

Navigation