Skip to main content
Log in

Recent research progress on the phase-field model of microstructural evolution during metal solidification

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Solidification structure is a key aspect for understanding the mechanical performance of metal alloys, wherein composition and casting parameters considerably influence solidification and determine the unique microstructure of the alloys. By following the principle of free energy minimization, the phase-field method eliminates the need for tracking the solid/liquid phase interface and has greatly accelerated the research and development efforts geared toward optimizing metal solidification microstructures. The recent progress in the application of phase-field simulation to investigate the effect of alloy composition and casting process parameters on the solidification structure of metals is summarized in this review. The effects of several typical elements and process parameters, including carbon, boron, silicon, cooling rate, pulling speed, scanning speed, anisotropy, and gravity, on the solidification structure are discussed. The present work also addresses the future prospects of phase-field simulation and aims to facilitate the widespread applications of phase-field approaches in the simulation of microstructures during solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.Y. Zhang, Y.H. Jiang, Z. Ma, et al., Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy, J. Mater. Process. Technol., 207(2008), No. 1–3, p. 107.

    Article  CAS  Google Scholar 

  2. P. Köhnen, S. Ewald, J.H. Schleifenbaum, A. Belyakov, and C. Haase, Controlling microstructure and mechanical properties of additively manufactured high-strength steels by tailored solidification, 35(2020), art. No. 101389.

  3. H.T. Zheng, R.R. Chen, G. Qin, et al., Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification, J. Mater. Sci. Technol., 38(2020), p. 19.

    Article  CAS  Google Scholar 

  4. S. Roy, S. Suwas, S. Tamirisakandala, D.B. Miracle, and R. Srinivasan, Development of solidification microstructure in boron-modified alloy Ti–6Al–4V–0.1B, Acta Mater., 59(2011), No. 14, p. 5494.

    Article  CAS  Google Scholar 

  5. M. Ali Jaafar, D.R. Rousse, S. Gibout, and J.P. Bédécarrats, A review of dendritic growth during solidification: Mathematical modeling and numerical simulations, Renewable Sustainable Energy Rev., 74(2017), p. 1064.

    Article  Google Scholar 

  6. F.Y. Wang, L.S. Dong, H.H. Wu, et al., Enhanced nanocrystalline stability of BCC iron via copper segregation, Prog. Nat. Sci., 33(2023), No. 2, p. 185.

    Article  CAS  Google Scholar 

  7. H. Assadi, A phase-field model for non-equilibrium solidification of intermetallics, Acta Mater., 55(2007), No. 15, p. 5225.

    Article  CAS  Google Scholar 

  8. M.G. Mecozzi, J. Sietsma, S. van der Zwaag, M. Apel, P. Schaffnit, and I. Steinbach, Analysis of the γα transformation in a C-Mn steel by phase-field modeling, Metall. Mater. Trans. A, 36(2005), No. 9, p. 2327.

    Article  Google Scholar 

  9. R.G. Thiessen and I.M. Richardson, A strategy for modeling microstructure in macroscopic simulations of welded material, Metall. Mater. Trans. B, 37(2006), No. 2, p. 293.

    Article  Google Scholar 

  10. R.G. Thiessen and I.M. Richardson, A physically based model for microstructure development in a macroscopic heat-affected zone: Grain growth and recrystallization, Metall. Mater. Trans. B, 37(2006), No. 4, p. 655.

    Article  Google Scholar 

  11. M.G. Mecozzi, J. Sietsma, and S. van der Zwaag, Analysis of γα transformation in a Nb micro-alloyed C-Mn steel by phase field modelling, Acta Mater., 54(2006), No. 5, p. 1431.

    Article  CAS  Google Scholar 

  12. W.F. Rao and A.G. Khachaturyan, Phase field theory of proper displacive phase transformations: Structural anisotropy and directional flexibility, a vector model, and the transformation kinetics, Acta Mater., 59(2011), No. 11, p. 4494.

    Article  CAS  Google Scholar 

  13. Y.Z. Wang and A.G. Khachaturyan, Multi-scale phase field approach to martensitic transformations, Mater. Sci. Eng. A, 438–440(2006), p. 55.

    Article  Google Scholar 

  14. K.W. Lai, S.J. Shi, Z.W. Yan, et al., Phase-field simulation of re-dissolution of γ’ phase in Ni-Al alloy by continuous and second-order aging treatment, Rare Met., 40(2021), No. 5, p. 1155.

    Article  CAS  Google Scholar 

  15. C. Yang, S.L. Li, X.T. Wang, J.S. Wang, and H.B. Huang, Phase-field simulation of multi-phase interactions in Fe-C peritectic solidification, Comput. Mater. Sci., 171(2020), art. No. 109220.

  16. K. Dargahi Noubary, M. Kellner, P. Steinmetz, J. Hötzer, and B. Nestler, Phase-field study on the effects of process and material parameters on the tilt angle during directional solidification of ternary eutectics, Comput. Mater. Sci., 138(2017), p. 403.

    Article  CAS  Google Scholar 

  17. I. Steinbach, Phase-field models in materials science, Modell. Simul. Mater. Sci. Eng., 17(2009), No. 7, art. No. 073001.

  18. J. Eiken, B. Böttger, and I. Steinbach, Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application, Phys. Rev. E, 73(2006), No. 6, art. No. 066122.

  19. S.J. Lv, H.H. Wu, K.Y. Wang, et al., The microstructure evolution and influence factors of acicular ferrite in low alloy steels, Comput. Mater. Sci., 218(2023), art. No. 111989.

  20. S.J. Lv, H.H. Wu, K.Y. Wang, et al., The austenite to polygonal ferrite transformation in low-alloy steel: Multi-phase-field simulation, J. Mater. Res. Technol., 24(2023), p. 9630.

    Article  CAS  Google Scholar 

  21. I. Steinbach, F. Pezzolla, B. Nestler, et al., A phase field concept for multiphase systems, Physica D, 94(1996), No. 3, p. 135.

    Article  Google Scholar 

  22. S. Fukumoto and S. Nomoto, Microstructure simulation for solidification of stainless steel by multi-phase-field model, J. Jpn. Inst. Met. Mater., 73(2009), No. 7, p. 502.

    Article  CAS  Google Scholar 

  23. S.J. Lv, S.Z. Wang, G.L. Wu, et al., Application of phase-field modeling in solid-state phase transformation of steels, J. Iron Steel Res. Int., 29(2022), No. 6, p. 867.

    Article  CAS  Google Scholar 

  24. S.G. Kim, W.T. Kim, J.S. Lee, M. Ode, and T. Suzuki, Large scale simulation of dendritic growth in pure undercooled melt by phase-field model, ISIJ Int., 39(1999), No. 4, p. 335.

    Article  CAS  Google Scholar 

  25. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Phase-field simulation of solidification, Annu. Rev. Mater. Res., 32(2002), p. 163.

    Article  CAS  Google Scholar 

  26. Y.X. Geng, H. Tang, J.H. Xu, et al., Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1770.

    Article  CAS  Google Scholar 

  27. W.L. Wang, C. Lu, L.J. Zhou, and P.S. Lyu, Research methods and influencing factors of interfacial heat transfer during subrapid solidification process of strip casting, J. Iron Steel Res. Int., 29(2022), No. 1, p. 3.

    Article  Google Scholar 

  28. C.F. Bai, B. Wang, J. Ma, J.Y. Zhang, and W.P. Pan, Modeling effect of cooling conditions on solidification process during thermal cycle of rollers in twin-roll strip casting, J. Iron Steel Res. Int., 30(2023), No. 1, p. 64.

    Article  Google Scholar 

  29. E. Safary, R. Taghiabadi, and M.H. Ghoncheh, Mechanical properties of Al–15Mg2Si composites prepared under different solidification cooling rates, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1249.

    Article  CAS  Google Scholar 

  30. J.Z. An, Z.Z. Cai, and M.Y. Zhu, Effect of titanium content on the refinement of coarse columnar austenite grains during the solidification of peritectic steel, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2172.

    Article  CAS  Google Scholar 

  31. Y.G. Chabak, K. Shimizu, V.G. Efremenko, et al., Microstructure and phase elemental distribution in high-boron multi-component cast irons, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 78.

    Article  CAS  Google Scholar 

  32. T. He, R. Hu, J.R. Yang, and H.Z. Fu, Phase selection and solidification path transition of Ti–48Al–xNb alloys with different cooling rates, Rare Met., 42(2023), No. 1, p. 288.

    Article  Google Scholar 

  33. H.Y. Zhang, Z.Y. Zhang, Y.F. Xu, et al., Microstructure and magnetocaloric properties of partially crystallized Gd60Co30Fe10 amorphous alloy prepared by different solidification cooling rates, Rare Met., 41(2022), No. 1, p. 246.

    Article  Google Scholar 

  34. Z.S. Jin, F.Y. Cao, G.Y. Cao, et al., Effect of casting temperature on the solidification process and (micro)structure of Zr-based metallic glasses, J. Mater. Res. Technol., 22(2023), p. 3010.

    Article  CAS  Google Scholar 

  35. B. Lu, Y. Li, H.Y. Wang, et al., Effects of cooling rates on the solidification behavior, microstructural evolution and mechanical properties of Al-Zn-MgCu alloys, J. Mater. Res. Technol., 22(2023), p. 2532.

    Article  CAS  Google Scholar 

  36. K.H. Shi, K.C. Zhou, Z.Y. Li, X.Q. Zan, K.L. Dong, and Q. Jiang, Microstructure and properties of ultrafine WC–Co–VC cemented carbides with different Co contents, Rare Met., 41(2022), No. 6, p. 1955.

    Article  CAS  Google Scholar 

  37. H.J. Fan, Y. Liu, J.W. Ye, W.B. Qiu, and Y.C. Qiu, Microstructure and mechanical properties of WC–(Ti, M)(C, N)–Co cemented carbides with different nitrogen contents, Rare Met., 41(2022), No. 10, p. 3530.

    Article  Google Scholar 

  38. M.F. Qi, L.Y. Wei, Y.Z. Xu, et al., Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1746.

    Article  CAS  Google Scholar 

  39. A.V. Koltygin, V.E. Bazhenov, I.V. Plisetskaya, et al., Influence of Zr and Mn additions on microstructure and properties of Mg–2.5wt%Cu–Xwt%Zn (X = 2.5, 5 and 6.5) alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1733.

    Article  CAS  Google Scholar 

  40. S.H. Ma, H.Q. Hao, D. Wang, L.H. Lou, and J. Zhang, Effects of Ta on the solidification behavior and microstructure of a rhenium-containing hot corrosion resistant single crystal, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 901.

    Article  CAS  Google Scholar 

  41. H.L. Huang, Z.H. Jia, Y. Xing, X.L. Wang, and Q. Liu, Micro-structure of Al-Si-Mg alloy with Zr/Hf additions during solidification and solution treatment, Rare Met., 38(2019), No. 11, p. 1033.

    Article  CAS  Google Scholar 

  42. X.Y. Zhao, R.R. Chen, Y. Yang, et al., Microstructure and mechanical properties of Ti43Al6Nb alloys with different zirconium contents, Rare Met., 42(2023), No. 6, p. 2047.

    Article  Google Scholar 

  43. R.Z. Zhang, J.S. He, S.G. Xu, F.C. Zhang, and X.T. Wang, The roles of Ce and Mn on solidification behaviors and mechanical properties of 7Mo super austenitic stainless steel, J. Mater. Res. Technol., 22(2023), p. 1238.

    Article  CAS  Google Scholar 

  44. J.W. Elmer, S.M. Allen, and T.W. Eagar, Microstructural development during solidification of stainless steel alloys, Metall. Trans. A, 20(1989), No. 10, p. 2117.

    Article  Google Scholar 

  45. M.M. Chen, R.H. Shi, Z.Z. Liu, et al., Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718, Int. J. Miner. Metall. Mater., (2023). DOI: https://doi.org/10.1007/s12613-023-2664-z

  46. W.L. Wang, L.K. Wang, and P.S. Lyu, Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by subrapid solidification, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 354.

    Article  CAS  Google Scholar 

  47. C. Wei, J. Wang, B.W. Dong, et al., Properties and microstructural evolution of a ternary Cu-Co-Fe immiscible alloy solidified under high magnetic fields, J. Mater. Res. Technol., 24(2023), p. 3564.

    Article  CAS  Google Scholar 

  48. Y.J. Zhang, J.X. Zhou, Y.J. Yin, X.Y. Ji, X. Shen, and Z. Guo, Study on the solutal convection during dendrite growth of superalloy under directional solidification condition, J. Mater. Res. Technol., 23(2023), p. 3916.

    Article  CAS  Google Scholar 

  49. C.L. Shang, H.H. Wu, G.F. Pan, et al., The characteristic microstructures and properties of steel-based alloy via additive manufacturing, Materials, 16(2023), No. 7, art. No. 2696.

  50. M. Paju and R. Möller, The effect of boron on phosphorus segregation in austenite, Scripta Metall., 18(1984), No. 8, p. 813.

    Article  CAS  Google Scholar 

  51. W. Chen, M.C. Chaturvedi, and N.L. Richards, Effect of boron segregation at grain boundaries on heat-affected zone cracking in wrought INCONEL 718, Metall. Mater. Trans. A, 32(2001), No. 4, p. 931.

    Article  Google Scholar 

  52. J.G. Jung, J. Kim, K.M. Noh, K.K. Park, and Y.K. Lee, Effects of B on microstructure and hardenability of resistance seam welded HSLA linepipe steel, Sci. Technol. Weld. Join., 17(2012), No. 1, p. 77.

    Article  CAS  Google Scholar 

  53. B.C. Yan, J. Zhang, and L.H. Lou, Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy, Mater. Sci. Eng. A, 474(2008), No. 1–2, p. 39.

    Article  Google Scholar 

  54. Q. Hu, L. Liu, X.B. Zhao, S.F. Gao, J. Zhang, and H.Z. Fu, Effect of carbon and boron additions on segregation behavior of directionally solidified nickel-base superalloys with rhenium, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3257.

    Article  CAS  Google Scholar 

  55. H.S. Whitesell and R.A. Overfelt, Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidified Mar-M247, Mater. Sci. Eng. A, 318(2001), No. 1–2, p. 264.

    Article  Google Scholar 

  56. H.W. Lee, Y.H. Kim, S.H. Lee, K.H. Lee, J.U. Park, and J.H. Sung, Effect of boron contents on weldability in high strength steel, J. Mech. Sci. Technol., 21(2007), No. 5, p. 771.

    Article  Google Scholar 

  57. M. Amirthalingam, E.M. van der Aa, C. Kwakernaak, M.J.M. Hermans, and I.M. Richardson, Elemental segregation during resistance spot welding of boron containing advanced high strength steels, Weld. World, 59(2015), No. 5, p. 743.

    Article  CAS  Google Scholar 

  58. H.S. Furtado, A.T. Bernardes, R.F. Machado, and C.A. Silva, Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys, Mat. Res., 12(2009), No. 3, p. 345.

    Article  CAS  Google Scholar 

  59. H. Shibata, Y. Arai, M. Suzuki, and T. Emi, Kinetics of peritectic reaction and transformation in Fe-C alloys, Metall. Mater. Trans. B, 31(2000), No. 5, p. 981.

    Article  Google Scholar 

  60. Y.K. Chuang, D. Reinisch, and K. Schwerdtfeger, Kinetics of the diffusion controlled peritectic reaction during solidification of iron–carbon-alloys, Metall. Trans. A, 6(1975), No. 1, p. 235.

    Article  CAS  Google Scholar 

  61. Y.Z. Shen, J.H. Liu, and H. Xu, Study of peritectic phase transition in high-Mn steel using phase-field method, Metall. Mater. Trans. B, 53(2022), No. 1, p. 121.

    Article  CAS  Google Scholar 

  62. M.G. Mendiratta, T.A. Parthasarathy, and D.M. Dimiduk, Oxidation behavior of αMo-Mo3Si-Mo5SiB2 (T2) three phase system, Intermetallics, 10(2002), No. 3, p. 225.

    Article  CAS  Google Scholar 

  63. G. Hasemann, S. Ida, L. Zhu, T. Iizawa, K. Yoshimi, and M. Krüger, Experimental assessment of the microstructure evolution and liquidus projection in the Mo-rich Mo–Si–B system, Mater. Des., 185(2020), art. No. 108233.

  64. R.A. Gaisin, V.M. Imayev, R.A. Shaimardanov, and R.M. Imayev, Structure and properties of Mo–9Si–8B alloy fabricated by casting, Inorg. Mater. Appl. Res., 8(2017), No. 5, p. 750.

    Article  Google Scholar 

  65. J.A. Lemberg and R.O. Ritchie, Mo-Si-B alloys for ultrahigh-temperature structural applications, Adv. Mater., 24(2012), No. 26, p. 3445.

    Article  CAS  Google Scholar 

  66. B. Nestler and A.A. Wheeler, Phase-field modeling of multiphase solidification, Comput. Phys. Commun., 147(2002), No. 1–2, p. 230.

    Article  Google Scholar 

  67. J. Kundin, E. Pogorelov, and H. Emmerich, Phase-field modeling of the microstructure evolution and heterogeneous nucleation in solidifying ternary Al-Cu-Ni alloys, Acta Mater., 83(2015), p. 448.

    Article  CAS  Google Scholar 

  68. O. Kazemi, G. Hasemann, M. Krüger, and T. Halle, Microstructure evolution and sequence of phase transition reactions through the solidification of Mo-Si-B alloy; a phase-field study, Comput. Mater. Sci., 193(2021), art. No. 110422.

  69. D. Montiel, L. Liu, L. Xiao, Y. Zhou, and N. Provatas, Microstructure analysis of AZ31 magnesium alloy welds using phase-field models, Acta Mater., 60(2012), No. 16, p. 5925.

    Article  CAS  Google Scholar 

  70. S. Gurevich, M. Amoorezaei, D. Montiel, and N. Provatas, Evolution of microstructural length scales during solidification of magnesium alloys, Acta Mater., 60(2012), No. 8, p. 3287.

    Article  CAS  Google Scholar 

  71. Y.B. Wang, M.G. Wei, X.T. Liu, et al., Phase-field study of the effects of the multi-controlling parameters on columnar dendrite during directional solidification in hexagonal materials, Eur. Phys. J. E, 43(2020), No. 7, art. No. 41.

  72. U. Scipioni Bertoli, B.E. MacDonald, and J.M. Schoenung, Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel, Mater. Sci. Eng. A, 739(2019), p. 109.

    Article  CAS  Google Scholar 

  73. I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov, Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder, J. Mater. Process. Technol., 213(2013), No. 4, p. 606.

    Article  CAS  Google Scholar 

  74. L.F. Liu, Q.Q. Ding, Y. Zhong, et al., Dislocation network in additive manufactured steel breaks strength–ductility trade-off, Mater. Today, 21(2018), No. 4, p. 354.

    Article  CAS  Google Scholar 

  75. T. Pinomaa, M. Lindroos, M. Walbrühl, N. Provatas, and A. Laukkanen, The significance of spatial length scales and solute segregation in strengthening rapid solidification microstructures of 316L stainless steel, Acta Mater., 184(2020), p. 1.

    Article  CAS  Google Scholar 

  76. X.B. Gong and K. Chou, Phase-field modeling of microstructure evolution in electron beam additive manufacturing, JOM, 67(2015), No. 5, p. 1176.

    Article  CAS  Google Scholar 

  77. S. Chu, C.W. Guo, T.X. Zhang, et al., Phase-field simulation of microstructure evolution in electron beam additive manufacturing, Eur. Phys. J. E, 43(2020), No. 6, art. No. 35.

  78. L.M. Wu and J. Zhang, Phase field simulation of dendritic solidification of Ti–6Al–4V during additive manufacturing process, JOM, 70(2018), No. 10, p. 2392.

    Article  CAS  Google Scholar 

  79. J. Zhang, L.M. Wu, Y. Zhang, and L.B. Meng, Phase field simulation of dendritic microstructure in additively manufactured titanium alloy, Met. Powder Rep., 74(2019), No. 1, p. 20.

    Article  Google Scholar 

  80. S. Sahoo and K. Chou, Phase-field simulation of microstructure evolution of Ti–6Al–4V in electron beam additive manufacturing process, Addit. Manuf., 9(2016), p. 14.

    CAS  Google Scholar 

  81. F.Y. Yu, The influence of anisotropy on the evolution of interfacial morphologies in directional solidification: A phase-field study, arXiv e-prints, 2022. https://api.semanticscholar.org/CorpusID:253223918

  82. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers, The redistribution of solute atoms during the solidification of metals, Acta Metall., 1(1953), No. 4, p. 428.

    Article  CAS  Google Scholar 

  83. W.W. Mullins and R.F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy, [in] Pierre Pelcé, ed., Dynamics of Curved Fronts, Elsevier, Amsterdam, 1988, p. 345.

    Chapter  Google Scholar 

  84. J.A. Warren and J.S. Langer, Prediction of dendritic spacings in a directional-solidification experiment, Phys. Rev. E, 47(1993), No. 4, p. 2702.

    Article  CAS  Google Scholar 

  85. M. Plapp, Phase-field modelling of solidification microstructures, J. Indian Inst. Sci., 96(2016), No. 3, p. 179.

    Google Scholar 

  86. A. Karma and W.J. Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Phys. Rev. E, 53(1996), No. 4, p. R3017.

    Article  CAS  Google Scholar 

  87. A. Karma and W.J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57(1998), No. 4, p. 4323.

    Article  CAS  Google Scholar 

  88. Z.J. Wang, J.C. Wang, and G.C. Yang, Onset of initial planar instability with surface-tension anisotropy during directional solidification, Phys. Rev. E, 80(2009), No. 5, art. No. 052603.

  89. Z.B. Dong, W.J. Zheng, Y.H. Wei, and K.J. Song, Dynamic evolution of initial instability during non-steady-state growth, Phys. Rev. E, 89(2014), No. 6, art. No. 062403.

  90. F.Y. Yu, Y.Z. Ji, Y.H. Wei, and L.Q. Chen, Effect of the misorientation angle and anisotropy strength on the initial planar instability dynamics during solidification in a molten pool, Int. J. Heat Mass Transf., 130(2019), p. 204.

    Article  CAS  Google Scholar 

  91. S. Jana, J. Jakumeit, R. Tiefers, and T. Stoyanov, Simulation of cold shuts and misruns in centrifugal casting of TiAl low pressure turbine blades, Mater. Sci. Forum, 765(2013), p. 155.

    Article  Google Scholar 

  92. M. Cisternas Fernández, M. Založnik, H. Combeau, and U. Hecht, Thermosolutal convection and macrosegregation during directional solidification of TiAl alloys in centrifugal casting, Int. J. Heat Mass Transf., 154(2020), art. No. 119698.

  93. A. Viardin, J. Zollinger, L. Sturz, et al., Columnar dendritic solidification of TiAl under diffusive and hypergravity conditions investigated by phase-field simulations, Comput. Mater. Sci., 172(2020), art. No. 109358.

  94. H.J. Diepers and I. Steinbach, Interaction of interdendritic convection and dendritic primary spacing: Phase-field simulation and analytical modeling, Mater. Sci. Forum, 508(2006), p. 145.

    Article  CAS  Google Scholar 

  95. I. Steinbach, Pattern formation in constrained dendritic growth with solutal buoyancy, Acta Mater., 57(2009), No. 9, p. 2640.

    Article  CAS  Google Scholar 

  96. M. Apel, H.J. Diepers, and I. Steinbach, On the effect of interdendritic flow on primary dendrite spacing: A phase field study and analytical scaling relations, [in] C.A. Gandin, ed., Modeling of Casting, Welding and Advanced Solidification Processes XI, Opio, Vol. 1, 2006, p. 505.

  97. C.C. Battalle, R.N. Grugel, A.B. Hmelo, and T.G. Wang, The effect of enhanced gravity levels on microstructural development in Pb-50 wt pct Sn alloys during controlled directional solidification, Metall. Mater. Trans. A, 25(1994), No. 4, p. 865.

    Article  Google Scholar 

  98. A. Viardin, Y. Souhar, M. Cisternas Fernández, M. Apel, and M. Založnik, Mesoscopic modeling of equiaxed and columnar solidification microstructures under forced flow and buoyancy-driven flow in hypergravity: Envelope versus phase-field model, Acta Mater., 199(2020), p. 680.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work is financially supported by the National Key Research and Development Program of China (No. 2021YFB3702401) and the National Natural Science Foundation of China (Nos. 51901013, 52122408, and 52071023). H.H. Wu also thanks the financial support from the Fundamental Research Funds for the Central Universities, China (University of Science and Technology Beijing (USTB), Nos. FRF-TP-2021-04C1 and 06500135). The computing work is supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering. J.M. Zhu thanks the financial support from the Qilu Young Talent Program of Shandong University, Zhejiang Lab Open Research Project, China (No. K2022PE0AB05), the Shandong Provincial Natural Science Foundation, China (No. ZR2023MA058), and the Guangdong Basic and Applied Basic Research Foundation, China (No. 2023A1515011819).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honghui Wu, Shuize Wang or Jiaming Zhu.

Ethics declarations

Xinping Mao and Honghui Wu are an advisory board member and a youth editorial board member for this journal, respectively, and they were not involved in the editorial review or the decision to publish this article. All authors confirm that they have no competing interests or financial ties that could influence the outcomes or interpretation of this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Lv, S., Wu, H. et al. Recent research progress on the phase-field model of microstructural evolution during metal solidification. Int J Miner Metall Mater 30, 2095–2111 (2023). https://doi.org/10.1007/s12613-023-2710-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2710-x

Keywords

Navigation