Skip to main content
Log in

Hot deformation behavior of novel high-strength Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The hot compression behavior of as-extruded Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine. Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s−1. Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress. The constitutive equation and processing maps of the alloy were obtained and analyzed. The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction (EBSD). The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures (approximately 1.57 µm). The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased. By contrast, dislocation density and texture intensity decreased. Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s−1. Most grains with {0001} planes tilted away from the compression direction (CD) gradually. In addition, when the strain rate decreased, the recrystallization degree and average grain size increased. Meanwhile, the dislocation density decreased. Texture appeared to be insensitive to the strain rate. These findings provide valuable insights into the hot compression behavior, microstructural evolution, and texture changes in the Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy, contributing to the understanding of its processing-microstructure-property relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Nakata, C. Xu, N.A.S. binti Osman, L. Geng, and S. Kamado, Development of corrosion-resistant Mg-Al-Ca-Mn-Zn alloy sheet with good tensile properties and stretch formability, J. Alloys Compd., 910(2022), art. No. 164752.

  2. T. Nakata, C. Xu, K. Kaibe, Y. Yoshida K. Yoshida, and S. Kamado, Improvement of strength and ductility synergy in a room-temperature stretch-formable Mg-Al-Mn alloy sheet by twin-roll casting and low-temperature annealing, J. Magnes. Alloys, 10(2022), No. 4, p. 1066.

    Article  CAS  Google Scholar 

  3. S. Nishimoto, M. Yamasaki, and Y. Kawamura, Inherited multimodal microstructure evolution of high-fracture-toughness Mg-Zn-Y-Al alloys during extrusion for the consolidation of rapidly solidified ribbons, J. Magnes. Alloys, 10(2022), No. 9, p. 2433.

    Article  CAS  Google Scholar 

  4. Z.T. Li, X.D. Zhang, M.Y. Zheng, et al., Effect of Ca/Al ratio on microstructure and mechanical properties of Mg-Al-Ca-Mn alloys, Mater. Sci. Eng. A, 682(2017), p. 423.

    Article  CAS  Google Scholar 

  5. J.S. Xie, Z. Zhang, S.J. Liu, et al., Designing new low alloyed Mg-RE alloys with high strength and ductility via high-speed extrusion, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 82.

    Article  CAS  Google Scholar 

  6. S.V. Satya Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, and S. Singh, The role and significance of Magnesium in modern day research—A review, J. Magnes. Alloys, 10(2022), No. 1, p. 1.

    Article  Google Scholar 

  7. H.L. Shi, C. Xu, X.S. Hu, W.M. Gan, K. Wu, and X.J. Wang, Improving the Young’s modulus of Mg via alloying and compositing—A short review, J. Magnes. Alloys, 10(2022), No. 8, p. 2009.

    Article  CAS  Google Scholar 

  8. L. Liu, X.J. Zhou, S.L. Yu, et al., Effects of heat treatment on mechanical properties of an extruded Mg-4.3Gd-3.2Y-1.2Zn-0.5Zr alloy and establishment of its Hall-Petch relation, J. Magnes. Alloys, 10(2022), No. 2, p. 501.

    Article  CAS  Google Scholar 

  9. J.R. Li, D.S. Xie, Z.R. Zeng, et al., Mechanistic investigation on Ce addition in tuning recrystallization behavior and mechanical property of Mg alloy, J. Mater. Sci. Technol., 132(2023), p. 1.

    Article  CAS  Google Scholar 

  10. Z.D. Wang, K.B. Nie, K.K. Deng, and J.G. Han, Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg-2Zn-0.8Sr-0.2Ca matrix composite reinforced by TiC nano-particles, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1981.

    Article  CAS  Google Scholar 

  11. S.W. Xu, C.C. Zhu, Z.H. Lin, et al., Dynamic microstructure evolution and mechanical properties of dilute Mg-Al-Ca-Mn alloy during hot rolling, J. Mater. Sci. Technol., 129(2022), p. 1.

    Article  CAS  Google Scholar 

  12. A. Chapuis and J.H. Driver, Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals, Acta Mater., 59(2011), No. 5, p. 1986.

    Article  CAS  Google Scholar 

  13. J. Deng, Y.C. Lin, S.S. Li, J. Chen, and Y. Ding, Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy, Mater. Des., 49(2013), p. 209.

    Article  CAS  Google Scholar 

  14. Z.W. Yu, A.T. Tang, Q. Wang, et al., High strength and superior ductility of an ultra-fine grained magnesium-manganese alloy, Mater. Sci. Eng. A, 648(2015), p. 202.

    Article  CAS  Google Scholar 

  15. F.P. Hu, S.J. Zhao, G.L. Gu, et al., Strong and ductile Mg-0.4Al alloy with minor Mn addition achieved by conventional extrusion, Mater. Sci. Eng. A, 795(2020), art. No. 139926.

  16. Z.W. Yu, A.T. Tang, J.J. He, et al., Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy, Mater. Charact., 136(2018), p. 310.

    Article  CAS  Google Scholar 

  17. S.D. Ma, A.T. Tang, P. Peng, et al., Effect of Al on microstructure and mechanical properties of as-extruded Mg-1Mn alloy sheet, Prog. Nat. Sci. Mater. Int., 30(2020), No. 3, p. 402.

    Article  CAS  Google Scholar 

  18. P. Peng, A.T. Tang, B. Wang, et al., Achieving superior combination of yield strength and ductility in Mg-Mn-Al alloys via ultrafine grain structure, J. Mater. Res. Technol., 15(2021), p. 1252.

    Article  CAS  Google Scholar 

  19. P. Peng, J. She, A.T. Tang, et al., A new dilute Mg-Mn-Al alloy with exceptional rollability and ductility at room temperature, Mater. Sci. Eng. A, 859(2022), art. No. 144229.

  20. L. Shao, C. Zhang, C.Y. Li, et al., Mechanistic study of Mg-Mn-Al extrusion alloy with superior ductility and high strength, Mater. Charact., 183(2022), art. No. 111651.

  21. S. Sanyal, P. Bhuyan, T.K. Bandyopadhyay, and S. Mandal, Multiscale precipitate evolution and its implications on the tensile deformation behavior in thermomechanically processed and peak-aged lean Mg-Al-Ca-Mn alloy, Materialia, 26(2022), art. No. 101566.

  22. J. Zuo, T. Nakata, C. Xu, et al., Effect of annealing on microstructure evolution and age-hardening behavior of dilute Mg-Al-Ca-Mn alloy, J. Mater. Res. Technol., 18(2022), p. 1754.

    Article  CAS  Google Scholar 

  23. J.H. Li, X.Y. Zhou, A. Breen, et al., Elucidation of formation and transformation mechanisms of Ca-rich Laves phase in Mg-Al-Ca-Mn alloys, J. Alloys Compd., 928(2022), art. No. 167177.

  24. S.S. Chai, S.Y. Zhong, Q.S. Yang, et al., Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg-Al-Ca-Mn alloys, J. Mater. Sci. Technol., 120(2022), p. 108.

    Article  CAS  Google Scholar 

  25. D.W. Kim, B.C. Suh, M.S. Shim, J.H. Bae, D.H. Kim, and N.J. Kim, Texture evolution in Mg-Zn-Ca alloy sheets, Metall. Mater. Trans. A, 44(2013), No. 7, p. 2950.

    Article  CAS  Google Scholar 

  26. Y. Chino, T. Ueda, Y. Otomatsu, et al., Effects of Ca on tensile properties and stretch formability at room temperature in Mg-Zn and Mg-Al alloys, Mater. Trans., 52(2011), No. 7, p. 1477.

    Article  CAS  Google Scholar 

  27. D.F. Shi, C.M. Cepeda-Jiménez, and M.T. Pérez-Prado, The relation between ductility at high temperature and solid solution in Mg alloys, J. Magnes. Alloys, 10(2022), No. 1, p. 224.

    Article  CAS  Google Scholar 

  28. T.T. Cao, Y. Zhu, Y.Y. Gao, et al., Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg-8Li-4Zn-1Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 949.

    Article  CAS  Google Scholar 

  29. X.S. Huang, M.Z. Bian, I. Nakatsugawa, et al., Simultaneously achieving excellent mechanical properties and high thermal conductivity in a high Mn-containing Mg-Zn-Ca-Al-Mn sheet alloy, J. Alloys Compd., 887(2021), art. No. 161394.

  30. H. Chen, L. Sun, X.N. Ke, et al., Microstructure evolution and mechanical properties of the Mg-5Al-1Mn-0.5Zn-.xCa alloys prepared by regular extrusion, Mater. Sci. Eng. A, 858(2022), art. No. 144117.

  31. M. Li, D.S. Xie, J.R. Li, et al., Realizing ultra-fine grains and ultra-high strength in conventionally extruded Mg-Ca-Al-Zn-Mn alloys: The multiple roles of nano-precipitations, Mater. Charact., 175(2021), art. No. 111049.

  32. J.D. Robson, D.T. Henry, and B. Davis, Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation, Acta Mater., 57(2009), No. 9, p. 2739.

    Article  CAS  Google Scholar 

  33. L. Li and X.M. Zhang, Hot compression deformation behavior and processing parameters of a cast Mg-Gd-Y-Zr alloy, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1396.

    Article  Google Scholar 

  34. H.Z. Li, H.J. Wang, Z. Li, C.M. Liu, and H.T. Liu, Flow behavior and processing map of as-cast Mg-10Gd-4.8Y-2Zn-0.6Zr alloy, Mater. Sci. Eng. A, 528(2010), No. 1, p. 154.

    Article  Google Scholar 

  35. H.C. Xiao, S.N. Jiang, B. Tang, et al., Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Y-Zr alloy, Mater. Sci. Eng. A, 628(2015), p. 311.

    Article  CAS  Google Scholar 

  36. B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, and F.S. Pan, Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg-2.0Zn-0.3Zr alloy based on true stress-strain curves, Mater. Sci. Eng. A, 560(2013), p. 727.

    Article  CAS  Google Scholar 

  37. G.B. Wei, X.D. Peng, F.P. Hu, et al., Deformation behavior and constitutive model for dual-phase Mg-Li alloy at elevated temperatures, Trans. Nonferrous Met. Soc. China, 26(2016), No. 2, p. 508.

    Article  CAS  Google Scholar 

  38. C. Zhang, L.W. Zhang, W.F. Shen, C.R. Liu, Y.N. Xia, and R.Q. Li, Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr-Ni-Mo alloyed steel, Mater. Des., 90(2016), p. 804.

    Article  CAS  Google Scholar 

  39. A. He, L. Chen, S. Hu, C. Wang, and L.X. Huangfu, Constitutive analysis to predict high temperature flow stress in 20CrMo continuous casting billet, Mater. Des., 46(2013), p. 54.

    Article  CAS  Google Scholar 

  40. H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734.

    Article  Google Scholar 

  41. Y. Yang, X.D. Peng, F.J. Ren, H.M. Wen, J.F. Su, and W.D. Xie, Constitutive modeling and hot deformation behavior of duplex structured Mg-Li-Al-Sr alloy, J. Mater. Sci. Technol., 32(2016), No. 12, p. 1289.

    Article  CAS  Google Scholar 

  42. G.B. Wei, X.D. Peng, A. Hadadzadeh, et al., Constitutive modeling of Mg-9Li-3Al-2Sr-2Y at elevated temperatures, Mech. Mater., 89(2015), p. 241.

    Article  Google Scholar 

  43. F.C. Ren, F. Chen, J. Chen, and X.Y. Tang, Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel, J. Manuf. Process., 31(2018), p. 640.

    Article  Google Scholar 

  44. A. Venkatalaxmi, B.S. Padmavathi, and T. Amaranath, A general solution of unsteady Stokes equations, Fluid Dyn. Res., 35(2004), No. 3, p. 229.

    Article  Google Scholar 

  45. L.Y. Ye, Y.W. Zhai, L.Y. Zhou, H.Z. Wang, and P. Jiang, The hot deformation behavior and 3D processing maps of 25Cr2Ni4MoV steel for a super-large nuclear-power rotor, J. Manuf. Process., 59(2020), p. 535.

    Article  Google Scholar 

  46. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Hot deformation and processing map of an as-extruded Mg-Zn-Mn-Y alloy containing I and W phases, Mater. Des., 87(2015), p. 245.

    Article  CAS  Google Scholar 

  47. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, et al., Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metall. Trans. A, 15(1984), No. 10, p. 1883.

    Article  Google Scholar 

  48. D.Q. Ma, S. Yuan, S.Y. Luan, et al., Hot deformation behavior, microstructure evolution and slip system of Mg-2Zn-0.5Mn-0.2Ca alloy, J. Mater. Res. Technol., 21(2022), p. 1643.

    Article  CAS  Google Scholar 

  49. N. Ansari, B. Tran, W.J. Poole, S.S. Singh, H. Krishnaswamy, and J. Jain, High temperature deformation behavior of Mg-5wt.%Y binary alloy: Constitutive analysis and processing maps, Mater. Sci. Eng. A, 777(2020), art. No. 139051.

  50. Z.D. Ma, G. Li, Z.H. Su, et al., Hot deformation behavior and microstructural evolution for dual-phase Mg-9Li-3Al alloys, J. Mater. Res. Technol., 19(2022), p. 3536.

    Article  CAS  Google Scholar 

  51. J.Y. Yang and W.J. Kim, The effect of addition of Sn to copper on hot compressive deformation mechanisms, microstructural evolution and processing maps, J. Mater. Res. Technol., 9(2020), No. 1, p. 749.

    Article  CAS  Google Scholar 

  52. O.B. Bembalge and S.K. Panigrahi, Hot deformation behavior and processing map development of cryorolled AA6063 alloy under compression and tension, Int. J. Mech. Sci., 191(2021), art. No. 106100.

  53. X.R. Chen, Q.Y. Liao, Y.X. Niu, et al., Comparison study of hot deformation behavior and processing map of AZ80 magnesium alloy casted with and without ultrasonic vibration, J. Alloys Compd., 803(2019), p. 585.

    Article  CAS  Google Scholar 

  54. L. Gu, N.N. Liang, Y.Y. Chen, and Y.H. Zhao, Achieving maximum strength-ductility combination in fine-grained Cu-Zn alloy via detwinning and twinning deformation mechanisms, J. Alloys Compd., 906(2022), art. No. 164401.

  55. S. Mishra, F. Khan, and S.K. Panigrahi, A crystal plasticity based approach to establish role of grain size and crystallographic texture in the Tension-Compression yield asymmetry and strain hardening behavior of a Magnesium-Silve-Rare Earth alloy, J. Magnes. Alloys, 10(2022), No. 9, p. 2546.

    Article  CAS  Google Scholar 

  56. A. Sheikhani, R. Roumina, and R. Mahmudi, Hot deformation behavior of an extruded AZ31 alloy doped with rare-earth elements, J. Alloys Compd., 852(2021), art. No. 156961.

  57. X. Liu, J.J. Jonas, L.X. Li, and B.W. Zhu, Flow softening, twin-ning and dynamic recrystallization in AZ31 magnesium, Mater. Sci. Eng. A, 583(2013), p. 242.

    Article  CAS  Google Scholar 

  58. A. Malik, Y.W. Wang, H.W. Cheng, et al., Constitutive analysis, twinning, recrystallization, and crack in fine-grained ZK61 Mg alloy during high strain rate compression over a wide range of temperatures, Mater. Sci. Eng. A, 771(2020), art. No. 138649.

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2021YFB3701100), the National Natural Science Foundation of China (No. 52271091), and the China Scholarship Council (No. 202206050135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Xie or Guobing Wei.

Ethics declarations

Yuanding Huang is an editorial board member for this journal and not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Yang, Y., Hu, C. et al. Hot deformation behavior of novel high-strength Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca alloy. Int J Miner Metall Mater 30, 2397–2410 (2023). https://doi.org/10.1007/s12613-023-2706-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2706-6

Keywords

Navigation